
Calends: Documented
Release 0.1.0

Hennik Hunsaker

Feb 28, 2023

CONTENTS

1 Introduction 3

2 Features in Calends 5

3 Installation of Calends 7
3.1 Installing Calends for the Command Line . 7
3.2 Installing Calends for Golang . 7
3.3 Installing Calends for C/C++ . 7
3.4 Installing Calends for Dart . 8
3.5 Installing Calends for JS/WASM . 8
3.6 Installing Calends for PHP . 9

4 Usage of Calends 11
4.1 Using Calends from the Command Line . 11
4.2 Using Calends in Golang . 19
4.3 Using Calends in C/C++ . 29
4.4 Using Calends in Dart . 40
4.5 Using Calends in JS/WASM . 50
4.6 Using Calends in PHP . 59

5 Calendar Systems 69
5.1 The Gregorian Calendar . 69
5.2 Julian Day Count . 69
5.3 Stardates . 70
5.4 TAI64 Time . 72
5.5 UNIX Time . 72

6 Custom Calendars 75
6.1 Custom Calendars in Golang . 75
6.2 Custom Calendars in C/C++ . 81
6.3 Custom Calendars in Dart . 87
6.4 Custom Calendars in JS/WASM . 91
6.5 Custom Calendars in PHP . 96

7 Appendix 101
7.1 Contributions . 101

Golang Package Index 103

PHP Namespace Index 105

i

Index 107

ii

Calends: Documented, Release 0.1.0

Calends is a library for handling dates and times across arbitrary calendar systems. It has a number of features essential
to handling dates and times in any supported system, as well as the ability to add support for more systems easily, all
without touching a line of its own code. Go ahead and read through the documentation here to learn more!

CONTENTS 1

https://calends.readthedocs.io/
https://godoc.org/github.com/danhunsaker/calends
https://gitter.im/danhunsaker/calends
https://github.com/danhunsaker/calends/releases
https://github.com/danhunsaker/calends/releases
https://github.com/danhunsaker/calends
https://github.com/danhunsaker/calends
https://github.com/danhunsaker/calends
https://github.com/danhunsaker/calends
https://github.com/danhunsaker/calends/actions
https://codecov.io/gh/danhunsaker/calends
https://goreportcard.com/report/github.com/danhunsaker/calends
https://libraries.io/github/danhunsaker/calends
https://crowdin.com/project/calends
https://liberapay.com/danhunsaker/

Calends: Documented, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

As mentioned before, Calends is a library for handling dates and times across arbitrary calendar systems. But what
does that actually mean?

Let’s say you’re working on an application that uses dates. Pretty much anything can qualify, really – we use dates in
everything, throughout our daily lives. Scheduling, journaling, historical research, projections into the future, or just
displaying the current date in the UI. Now let’s say you want your app to be used by people all over the globe. The
current approach, used for decades, is to simply use the Gregorian Calendar, which has (partially as a side effect of this
decision) become the default calendar system in use across the globe, for coordinating, tracking, and preserving events
worldwide.

But this decision wasn’t made with internationalization and localization in mind. It was made as a result of practicality,
with limited computing capabilities at the time, and persists mostly as a result of laziness – if the entire world is already
using it anyway, why bother with anything else? It has also persisted out of ignorance – many people aren’t aware
there are other calendars out there in the first place, never mind that several are still in active use to this day. Properly
localizing applications should include adjusting the displayed date to use the preferred calendar system of the user.

Sadly, most of the solutions currently available for handling dates (and times) in software are purpose-built for a single
calendar system, and use APIs entirely different from those meant to handle dates in others. This makes it very tricky
to build an application that supports more than one calendar system at a time. Each new calendar system requires hours
of work to learn, connect, and usually abstract to a point where it is usable within the larger application, and even that’s
no guarantee the values can be stored or compared accurately.

That’s what Calends set out to solve. It provides a single interface for interacting with any supported calendar system,
and an easy way to extend it to support others, so that once you’ve added support for a calendar system once, you have
that support anywhere, without having to rewrite anything to fit your next application. Additionally, you can take full
advantage of any calendar system implemented by anybody else.

Accept date/time input in any calendar system, perform date/time calculations on the resulting value, again in any
calendar system, and then display the result – yes, in any calendar system. Dates are stored, internally, in an extremely
accurate value that can track dates out 146 billion years into the past or future, with a resolution of 10-45 seconds, which
is smaller than Planck Time1. In other words, it should be more than sufficient to record instants of any duration and
resolution desired for any conceived use case.

1 Planck Time is the smallest meaningful unit of time, and is about 54×10-45 seconds. It corresponds to the amount of time it takes a photon
(traveling at the speed of light through a vaccuum) to traverse one Planck Length, which itself is about 10-20 times the diameter of a proton.
Even quantum interactions below this scale lose any meaning, and so values below them are considered extraneous, in addition to being entirely
unmeasurable with current technologies and techniques.

3

https://en.wikipedia.org/wiki/Planck_time

Calends: Documented, Release 0.1.0

4 Chapter 1. Introduction

CHAPTER

TWO

FEATURES IN CALENDS

For a current indication of which of these features are fully implemented at the moment, check the README.

• Large range and high precision Calends understands dates 262 seconds into the future or past, in units as small
as 10-45 seconds – that’s over 146 billion years into the past or future (146 138 512 313 years, 169 days,
10 hours, 5 minutes, and 28 seconds from CE 1970 Jan 01 00:00:00 TAI Gregorian), at resolutions
smaller than Planck Time (54×10-45 seconds, and the smallest meaningful duration even on the quantum
scale). That encompasses well beyond the expected lifespan of the Universe, at resolutions enough to
represent quantum events.

• Supports date (and time) values in multiple calendar systems Supported out of the box are the following (all
systems are proleptic – extrapolated beyond the officially-defined limits – unless specified otherwise):

– Unix time A count of the number of seconds since CE 1970 Jan 01 00:00:00 UTC Gregorian

– TAI64 Essentially Unix time plus 262, but using TAI seconds instead of UTC seconds, so times can
be converted unambiguously (UTC uses leap seconds to keep the solar zenith at noon, while TAI
is a simple, unadjusted count). Calends supports an extended version of this spec, with three more
components, to encode out to 45 places instead of just 18; this is also actually the internal time
scale used by Calends itself, which is how it can support such a broad range of dates at such a high
resolution.

∗ Automatic calculation of leap second offsets

∗ Estimation of undefined past and future leap second insertions

∗ Automatic updates for handling leap second insertions

– Gregorian The current international standard calendar system

∗ Disconnect from native time.Time implementation, and its limitations

– Julian The previous version of the Gregorian calendar

– Julian Day Count A count of days since BCE 4713 Jan 01 12:00:00 UTC Julian
(proleptic)

– Hebrew

– Persian

– Chinese Several variants

– Meso-American Commonly called Mayan, but used by several cultures in the region

5

https://github.com/danhunsaker/calends

Calends: Documented, Release 0.1.0

– Discordian

– Stardate Yes, the ones from Star Trek™; several variants exist

• Encodes both time spans and instants in a single interface The library treats the time values it encodes as
[start, end) sets (that is, the start point is included in the range, as is every point between start and
end, but the end point itself is _not_ included in the range). This allows duration to accurately be end -
start in all cases. (And yes, that also means you can create spans with duration < 0.)

• Supports calculations and comparisons on spans and instants Addition, subtraction, intersection, combina-
tion, gap calculation, overlap detection, and similar operations are all supported directly on Calends values.

• Conversion to/from native date/time types While this is possible by using a string representation as an inter-
mediary, in either direction, some data and precision is lost in such a conversion. Instead, Calends supports
conversion to and from such types directly, preserving as much data and accuracy as each native type pro-
vides.

• Geo-temporally aware The library provides methods for passing a location instead of a calendar system, and
selecting an appropriate calendar based on which was most common in that location at that point in time.
(Some guess work is involved in this process when parsing dates, so it is still preferred to supply the calendar
system, if known, when parsing.)

• Time zone support

• Well-defined interfaces for extending the library Add more calendar systems, type conversions, or geo-
temporal relationships without forking/modifying the library itself.

• Shared library (.so/.dll/.dylib) In order to use the library outside of Golang projects, we first need to
export its functionality in a shared library, which can then be accessed from other programming evironments
and applications, generally via FFI.

• WebAssembly binary In order to use the library in the browser, we first need to export its functionality in a
WebAssembly (WASM) binary, which can then be accessed by JavaScript. (Go currently doesn’t support
the WASI standard, so the functions are registered into the global namespace rather than being exported
by WebAssembly itself. More on that in the JS docs.)

6 Chapter 2. Features in Calends

CHAPTER

THREE

INSTALLATION OF CALENDS

The steps here vary based on which programming language(s) you’re using. Golang is a simple install and import.
Other languages use a language-specific wrapper around the compiled shared library. Select your language to take a
deeper look.

3.1 Installing Calends for the Command Line

You can grab a calends binary for your platform OS/architecture from the GitHub Releases page, and just run it
directly. Alternately, you can clone the source and build it from there:

Sample Linux steps:
mkdir -p $GOPATH/src/github.com/danhunsaker
cd $GOPATH/src/github.com/danhunsaker
git clone https://github.com/danhunsaker/calends
cd calends
go get ./...
go build -o calends ./cli

3.2 Installing Calends for Golang

Install the library with go get github.com/danhunsaker/calends, and then import "github.com/
danhunsaker/calends" wherever you intend to use it. If you’re using another Go dependency manager,
you’ll need to use its dependency installation method instead; consult its documentation for more details, as we can’t
possibly cover them all here.

3.3 Installing Calends for C/C++

3.3.1 Binary Install

For use with C/C++, simply grab the latest version of libcalends from the GitHub Releases page, and extract its
contents wherever your compiler expects to find .h and .so/.dll/.dylib files. Be sure to grab the correct version
for your architecture!

7

https://github.com/danhunsaker/calends/releases
https://github.com/danhunsaker/calends/releases

Calends: Documented, Release 0.1.0

3.3.2 Source Install

To install from source, you’ll need Golang 1.9+ installed to use its compiler. Clone the repository, build libcalends,
then copy the resulting .so/.dll/.dylib and .h files to wherever your C/C++ compiler expects to find them.

Sample Linux steps:
mkdir -p $GOPATH/src/github.com/danhunsaker
cd $GOPATH/src/github.com/danhunsaker
git clone https://github.com/danhunsaker/calends
cd calends/libcalends
go get ../...
go build -v -i -buildmode=c-shared -o libcalends.so

Adjust the above example commands as needed for your actual development OS.

3.4 Installing Calends for Dart

For use with Dart, use pub as normal:

dart pub add calends

Or with Flutter:

flutter pub add calends

You’ll also need to grab the latest version of libcalends from the GitHub Releases page, and extract its contents (you
can skip any .h files) into your project’s root directory, next to pubspec.yaml. Be sure to grab the correct archive for
your architecture!

3.5 Installing Calends for JS/WASM

For use with JS, use npm (or your preferred package manager):

.. code-block:: bash

npm install -s calends

This will pull in the JS wrapper package as well as the corresponding WASM binary.

For use on the server, that’s pretty much it. The library takes care of the rest.

For use on the web, you’ll need to ensure the WASM is accessible to the server, next to the library itself. The easiest
way to ensure this is to pull in calends.js directly via <script> tag, but if you use a package to compile/minify/etc
your JS dependencies, you’ll need to configure that package to include calends.wasm alongside your script(s). Here’s
an example for webpack:

.. code-block:: javascript

const CopyPlugin = require("copy-webpack-plugin");

// ...

(continues on next page)

8 Chapter 3. Installation of Calends

https://github.com/danhunsaker/calends/releases

Calends: Documented, Release 0.1.0

(continued from previous page)

module.exports = {
// ...
plugins: [
new CopyPlugin({
patterns: [
{ from: "node_modules/calends/calends.wasm",
to: "[name][ext]" },

],
}),

],
};

It’s not clean, but until Go compiles compliant WASM binaries, it’s the best we can do right now, since we can’t use We-
bAssembly ESM Integration <https://github.com/WebAssembly/esm-integration/tree/main/proposals/esm-integration>
yet. Once it defines exports correctly, we can drop much of the JS wrapper and focus purely on translating bare func-
tions into full classes exclusively.

3.6 Installing Calends for PHP

For use with PHP, use Composer to install the PHP FFI wrapper:

composer install danhunsaker/calends

The post-install script will grab the appropriate libcalends for your system, along with the relevant header file. From
there, simply update your php.ini to load the FFI extension (if not already loaded) and preload the header file:

extension=ffi.so
ffi.preload=/path/to/your/code/vendor/lib/calends-phpffi.h

If you don’t have access to edit your php.ini, ensure the FFI extension is available and enabled, then manually load
the header file in your code:

FFI::load(__DIR__ . "/vendor/lib/calends-phpffi.h");

3.6. Installing Calends for PHP 9

Calends: Documented, Release 0.1.0

10 Chapter 3. Installation of Calends

CHAPTER

FOUR

USAGE OF CALENDS

Once you have installed Calends, you’ll want to know how to actually make use of it in your own projects. The exact
approach for this varies by language, so we’ve broken it into multiple sections to make it easier to wade through and
find what you need. Find your language, below, and dig in a bit further to see how to do everything you need!

4.1 Using Calends from the Command Line

Calends can be used from the command line directly, though some if its features are limited or unavailable. Specifically,
it doesn’t support custom calendars, so you’ll need to ensure you build it with the calendar you want already loaded.

4.1.1 Command Line Options

The available options for calends, on the command line directly, are the following:

convert <from-calendar> <from-format> <to-calendar> <to-format> [<date>]

- from-calendar The calendar system to parse the date/time with.

- from-format The format the date/time is expected to use.

- to-calendar The calendar system to format the date/time with.

- to-format The format the date/time is expected to use.

- date The value to convert.

Converts a date from one calendar/format to another. If date isn’t provided in the arguments, it’s read from
/dev/stdin instead.

parse <from-calendar> <from-format> [<date>]

- from-calendar The calendar system to parse the date/time with.

- from-format The format the date/time is expected to use.

- date The value to parse.

Converts a date from the given calendar/format to a portable/unambiguous date stamp. The output from this
command can then be used as input to others.

format <to-calendar> <to-format> [<stamp>]

- to-calendar The calendar system to format the date/time with.

- to-format The format the date/time is expected to use.

- stamp The value to format.

11

Calends: Documented, Release 0.1.0

Converts a date stamp from the parse command to the given calendar/format.

offset <offset-calendar> [<offset> [<stamp>]]

- offset-calendar The calendar system to interpret the offset with.

- offset The offset to add.

- stamp The value to add the offset to.

Adds an offset to the date stamp from the parse command.

There is also a calends compare, whose options are these:

contains [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 contains stamp2.

overlaps [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 overlaps with stamp2.

abuts [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 abuts stamp2.

same [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 is the same as stamp2.

shorter [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 is shorter than stamp2.

same-duration [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 is the same duration as stamp2.

longer [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 is longer than stamp2.

12 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

before [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 is before stamp2.

start-before [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 starts before stamp2.

end-before [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 ends before stamp2.

during [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 is during stamp2.

start-during [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 starts during stamp2.

end-during [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 ends during stamp2.

after [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 is after stamp2.

start-after [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 starts after stamp2.

4.1. Using Calends from the Command Line 13

Calends: Documented, Release 0.1.0

end-after [<stamp1> [<stamp2>]]

- stamp1 The value to compare.

- stamp2 The value to compare the other to.

Compares stamp1 to stamp2, and returns whether stamp1 ends after stamp2.

4.1.2 Interactive/Batch Mode

Create

parse <calendar> <format> <date> <target>

- calendar The calendar system to parse the date/time with.

- format The format the date/time is expected to use.

- date The value to parse.

- target The name to give the result.

Creates a new Calends value, using calendar to select a calendar system, and format to describe the contents
of date to parse. The result is stored as target, so it can be used later on by other commands.

parse-range <calendar> <format> <date> <end-date> <target>

- calendar The calendar system to parse the dates/times with.

- format The format the dates/times are expected to use.

- date The start date to parse.

- end-date The end date to parse.

- target The name to give the result.

Creates a new Calends value, using calendar to select a calendar system, and format to describe the contents
of date and end-date to parse. The result is stored as target, so it can be used later on by other commands.

Read

date <calendar> <format> <source>

- calendar The calendar system to format the date/time with.

- format The format the date/time is expected to be in.

- source The name of the Calends value to use.

Retrieves the start date of source as a string. The value is generated by the calendar system given in calendar,
according to the format string in format.

end-date <calendar> <format> <source>

- calendar The calendar system to format the date/time with.

- format The format the date/time is expected to be in.

- source The name of the Calends value to use.

Retrieves the end date of source as a string. The value is generated by the calendar system given in calendar,
according to the format string in format.

14 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Update

set-date <calendar> <format> <date> <source> <target>

- calendar The calendar system to parse the date/time with.

- format The format the date/time is expected to use.

- date The value to parse the date/time from.

- source The name of the Calends value to use.

- target The name to give the result.

Sets the start date of target based on source’s current value. The inputs are the same as for parse, above.

set-end-date <calendar> <format> <date> <source> <target>

- calendar The calendar system to parse the date/time with.

- format The format the date/time is expected to use.

- date The value to parse the date/time from.

- source The name of the Calends value to use.

- target The name to give the result.

Sets the end date of target based on source’s current value. The inputs are the same as for parse, above.

Manipulate

add <calendar> <offset> <source> <target>

- calendar The calendar system to parse the offset with.

- offset The value to parse the offset from.

- source The name of the Calends value to use.

- target The name to give the result.

Increases the end date of source’s current value by offset, as interpreted by the calendar system given in
calendar.

add-from-end <calendar> <offset> <source> <target>

- calendar The calendar system to parse the offset with.

- offset The value to parse the offset from.

- source The name of the Calends value to use.

- target The name to give the result.

Increases the start date of source’s current value by offset, as interpreted by the calendar system given in
calendar.

subtract <calendar> <offset> <source> <target>

- calendar The calendar system to parse the offset with.

- offset The value to parse the offset from.

- source The name of the Calends value to use.

4.1. Using Calends from the Command Line 15

Calends: Documented, Release 0.1.0

- target The name to give the result.

Works the same as add , except it decreases the start date, rather than increasing it.

subtract-from-end <calendar> <offset> <source> <target>

- calendar The calendar system to parse the offset with.

- offset The value to parse the offset from.

- source The name of the Calends value to use.

- target The name to give the result.

Works the same as add-from-end , except it decreases the end date, rather than increasing it.

next <calendar> <offset> <source> <target>

- calendar The calendar system to parse the offset with.

- offset The value to parse the offset from.

- source The name of the Calends value to use.

- target The name to give the result.

Sets target to a Calends value of offset duration (as interpreted by the calendar system given in calendar),
which abuts the end of source. If offset is empty, calendar is ignored, and source’s duration is used
instead.

previous <calendar> <offset> <source> <target>

- calendar The calendar system to parse the offset with.

- offset The value to parse the offset from.

- source The name of the Calends value to use.

- target The name to give the result.

Sets target to a Calends value of offset duration (as interpreted by the calendar system given in calendar),
which abuts the start of source. If offset is empty, calendar is ignored, and source’s duration is used
instead.

Combine

merge <source> <combine> <target>

- source The name of the Calends value to use.

- combine The Calends value to merge.

- target The name to give the result.

Sets target to a value spanning from the earliest start date to the latest end date between source and combine.

intersect <source> <combine> <target>

- source The name of the Calends value to use.

- combine The Calends value to intersect.

- target The name to give the result.

Sets target to a value spanning the overlap between source and combine. If source and combine don’t
overlap, returns an error.

16 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

gap <source> <combine> <target>

- source The name of the Calends value to use.

- combine The Calends value to gap.

- target The name to give the result.

Sets target to a value spanning the gap between source and combine. If source and combine overlap (and
there is, therefore, no gap to return), returns an error.

Compare

difference <source> <compare> <mode>

- source The name of the Calends value to use.

- compare The Calends value to compare.

- mode The comparison mode.

Returns the difference of source minus compare, using mode to select which values to use in the calculation.
Valid modes include:

• start - use the start date of both source and compare

• duration - use the duration of both source and compare

• end - use the end date of both source and compare

• start-end - use the start of source, and the end of compare

• end-start - use the end of source, and the start of compare

compare <source> <compare> <mode>

- source The name of the Calends value to use.

- compare The Calends value to compare.

- mode The comparison mode.

Returns -1 if source is less than compare, 0 if they are equal, and 1 if source is greater than compare, using
mode to select which values to use in the comparison. Valid modes are the same as for difference, above.

contains <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Checks whether source contains all of compare.

overlaps <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Checks whether source overlaps with compare.

abuts <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

4.1. Using Calends from the Command Line 17

Calends: Documented, Release 0.1.0

Checks whether source abuts compare (that is, whether one begins at the same instant the other ends).

is-same <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Checks whether source covers the same span of time as compare.

is-shorter <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Compares the duration of source and compare.

is-same-duration <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Compares the duration of source and compare.

is-longer <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Compares the duration of source and compare.

is-before <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Compares the entirety of source with the start date of compare.

starts-before <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Compares the start date of source with the start date of compare.

ends-before <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Compares the end date of source with the start date of compare.

is-during <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Checks whether the entirety of source lies between the start and end dates of compare.

18 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

starts-during <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Checks whether the start date of source lies between the start and end dates of compare.

ends-during <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Checks whether the end date of source lies between the start and end dates of compare.

is-after <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Compares the entirety of source with the end date of compare.

starts-after <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Compares the start date of source with the end date of compare.

ends-after <source> <compare>

- source The name of the Calends value to use.

- compare The Calends value to compare.

Compares the end date of source with the end date of compare.

4.2 Using Calends in Golang

Calends exposes a very small handful of things for use outside the library itself. One is the Calends class, documented
here, which should be the only interface users of the library ever need to touch.

Another thing Calends exposes is the calendars.TAI64NARUXTime class, used to store and manipulate the instants
of time which make up a Calends instance. The rest are interfaces for extending the library’s functionality. These are
covered in the Custom Calendars in Golang section.

Note: Calends objects are immutable - all methods return a new Calends object where they might otherwise alter
the current one. This is true even of the Calends.Set* methods. This has the side effect of using more memory to
perform manipulations than updating values on an existing object would. It makes many operations safer, though, than
mutable objects would allow.

Calends

The main entry point to Calends and its functionality. Calends objects should only be created with the Create
function, and never directly (especially given its values are all unexported ones).

4.2. Using Calends in Golang 19

Calends: Documented, Release 0.1.0

4.2.1 Create

func Create(value interface, calendar string, format string) (Calends, error)

Parameters

• value (interface{}) – The value to parse the date(s)/time(s) from.

• calendar (string) – The calendar system to parse the date(s)/time(s) with.

• format (string) – The format the date(s)/time(s) is/are expected to use.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Creates a new Calends object, using calendar to select a calendar system, and format to parse the contents
of value into the Calends object’s internal instants. The type of value can vary based on the calendar system
itself, but generally speaking can always be a string.

In any case, the value can always be a map[string]interface{}, where the keys are any two of start, end,
and duration. If all three are provided, duration is ignored in favor of calculating it directly. If only one of
the listed keys is provided, value is passed to the calendar system itself unchanged.

The calendar system then converts value to a calendars.TAI64NARUXTime instant, which the Calends object
sets to the appropriate internal value.

4.2.2 Read

func (Calends) Date(calendar string, format string) (string, error)

Parameters

• calendar (string) – The calendar system to format the date/time with.

• format (string) – The format the date/time is expected to be in.

Returns The start date of the Calends object

Return type string

Returns error when an error occurs; nil otherwise

Return type error or nil

Retrieves the start date of the Calends object as a string. The value is generated by the calendar system given
in calendar, according to the format string in format.

func (Calends) EndDate(calendar string, format string) (string, error)

Parameters

• calendar (string) – The calendar system to format the date/time with.

• format (string) – The format the date/time is expected to be in.

Returns The end date of the Calends object

Return type string

Returns error when an error occurs; nil otherwise

20 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Return type error or nil

Retrieves the end date of the Calends object as a string. The value is generated by the calendar system given in
calendar, according to the format string in format.

func (Calends) Duration()→ Float

Returns The duration of the Calends object

Return type math/big.(*Float)

Retrieves the duration of the Calends object as an arbitrary-precision floating point number. This value will be
0 if the Calends object is an instant.

4.2.3 Update

func (Calends) SetDate(stamp interface, calendar string, format string) (Calends, error)

Parameters

• value (interface{}) – The value to parse the date/time from.

• calendar (string) – The calendar system to parse the date/time with.

• format (string) – The format the date/time is expected to use.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Sets the start date of a Calends object, based on the Calends object’s current value. The inputs are the same as
for Create, above, except the string → value map option isn’t available, since you’re already specifically setting
the start value explicitly.

func (Calends) SetEndDate(stamp interface, calendar string, format string) (Calends, error)

Parameters

• value (interface{}) – The value to parse the date/time from.

• calendar (string) – The calendar system to parse the date/time with.

• format (string) – The format the date/time is expected to use.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Sets the end date of a Calends object, based on the Calends object’s current value. The inputs are the same as
for Create, above, except the string → value map option isn’t available, since you’re already specifically setting
the end value explicitly.

func (Calends) SetDuration(duration interface, calendar string) (Calends, error)

Parameters

• duration (interface{}) – The value to parse the new duration from.

4.2. Using Calends in Golang 21

Calends: Documented, Release 0.1.0

• calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Sets the duration of a Calends object, by adjusting its end point, and using the current start point as an anchor.
The duration value is interpreted by the calendar system given in calendar, so is subject to any of its rules.

func (Calends) SetDurationFromEnd(duration interface, calendar string) (Calends, error)

Parameters

• duration (interface{}) – The value to parse the new duration from.

• calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Sets the duration of a Calends object, by adjusting its start point, and using the current end point as an anchor.
The duration value is interpreted by the calendar system given in calendar, so is subject to any of its rules.

4.2.4 Manipulate

func (Calends) Add(offset interface, calendar string) (Calends, error)

Parameters

• offset (interface{}) – The value to parse the offset from.

• calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Increases the end date of the Calends object’s current value by offset, as interpreted by the calendar system
given in calendar.

func (Calends) AddFromEnd(offset interface, calendar string) (Calends, error)

Parameters

• offset (interface{}) – The value to parse the offset from.

• calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

22 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Return type error or nil

Increases the start date of the Calends object’s current value by offset, as interpreted by the calendar system
given in calendar.

func (Calends) Subtract(offset interface, calendar string) (Calends, error)

Parameters

• offset (interface{}) – The value to parse the offset from.

• calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Works the same as Add, except it decreases the start date, rather than increasing it.

func (Calends) SubtractFromEnd(offset interface, calendar string) (Calends, error)

Parameters

• offset (interface{}) – The value to parse the offset from.

• calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Works the same as AddFromEnd, except it decreases the end date, rather than increasing it.

func (Calends) Next(offset interface, calendar string) (Calends, error)

Parameters

• offset (interface{}) – The value to parse the offset from.

• calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Returns a Calends object of offset duration (as interpreted by the calendar system given in calendar), which
abuts the Calends object’s current value. If offset is empty, calendar is ignored, and the current object’s
duration is used instead.

func (Calends) Previous(offset interface, calendar string) (Calends, error)

Parameters

• offset (interface{}) – The value to parse the offset from.

• calendar (string) – The calendar system to parse the date/time with.

4.2. Using Calends in Golang 23

Calends: Documented, Release 0.1.0

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Returns a Calends object of offset duration (as interpreted by the calendar system given in calendar), which
abuts the Calends object’s current value. If offset is empty, calendar is ignored, and the current object’s
duration is used instead.

4.2.5 Combine

func (Calends) Merge(c2 Calends) (Calends, error)

Parameters

• c2 (Calends) – The Calends object to merge.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Returns a Calends object spanning from the earliest start date to the latest end date between the current Calends
object and c2.

func (Calends) Intersect(c2 Calends) (Calends, error)

Parameters

• c2 (Calends) – The Calends object to intersect.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Returns a Calends object spanning the overlap between the current Calends object and c2. If the current object
and c2 don’t overlap, returns an error.

func (Calends) Gap(c2 Calends) (Calends, error)

Parameters

• c2 (Calends) – The Calends object to gap.

Returns A new Calends object

Return type Calends

Returns error when an error occurs; nil otherwise

Return type error or nil

Returns a Calends object spanning the gap between the current Calends object and c2. If the current object
and c2 overlap (and there is, therefore, no gap to return), returns an error.

24 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

4.2.6 Compare

func (Calends) Difference(c2 Calends, mode string)→ Float

Parameters

• c2 (Calends) – The Calends object to compare.

• mode (string) – The comparison mode.

Returns The difference, as an arbitrary-precision floating point number

Return type math/big.Float

Returns the difference of the current Calends object minus c2, using mode to select which values to use in the
calculation. Valid modes include:

• start - use the start date of both the current object and c2

• duration - use the duration of both the current object and c2

• end - use the end date of both the current object and c2

• start-end - use the start of the current object, and the end of c2

• end-start - use the end of the current object, and the start of c2

func (Calends) Compare(c2 Calends, mode string)→ int

Parameters

• c2 (Calends) – The Calends object to compare.

• mode (string) – The comparison mode.

Returns A standard comparison result

Return type int

Returns -1 if the current Calends object is less than c2, 0 if they are equal, and 1 if the current object is greater
than c2, using mode to select which values to use in the comparison. Valid modes are the same as for (Calends)
Difference, above.

func (Calends) Contains(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object contains all of c2.

func (Calends) Overlaps(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object overlaps with c2.

4.2. Using Calends in Golang 25

Calends: Documented, Release 0.1.0

func (Calends) Abuts(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object abuts c2 (that is, whether one begins at the same instant the other
ends).

func (Calends) IsSame(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object covers the same span of time as c2.

func (Calends) IsShorter(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends object and c2.

func (Calends) IsSameDuration(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends object and c2.

func (Calends) IsLonger(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends object and c2.

func (Calends) IsBefore(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

26 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Return type bool

Compares the entirety of the current Calends object with the start date of c2.

func (Calends) StartsBefore(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the start date of the current Calends object with the start date of c2.

func (Calends) EndsBefore(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the end date of the current Calends object with the start date of c2.

func (Calends) IsDuring(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the entirety of the current Calends object lies between the start and end dates of c2.

func (Calends) StartsDuring(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the start date of the current Calends object lies between the start and end dates of c2.

func (Calends) EndsDuring(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the end date of the current Calends object lies between the start and end dates of c2.

func (Calends) IsAfter(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

4.2. Using Calends in Golang 27

Calends: Documented, Release 0.1.0

Returns The result of the comparison

Return type bool

Compares the entirety of the current Calends object with the end date of c2.

func (Calends) StartsAfter(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the start date of the current Calends object with the end date of c2.

func (Calends) EndsAfter(c2 Calends)→ bool

Parameters

• c2 (Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the end date of the current Calends object with the end date of c2.

4.2.7 Export

func (Calends) String()→ string

Returns The string representation of the current value.

Return type string

Implements the fmt.Stringer interface.

func (Calends) MarshalText() ([]byte, error)

Returns A byte slice containing the marshalled text.

Return type []byte

Returns Any error that occurs.

Return type error

Implements the encoding.TextMarshaler interface.

func (*Calends) UnmarshalText(in []byte)→ error

Parameters

• in ([]byte) – A byte slice containing the marshalled text.

Returns Any error that occurs.

Return type error

Implements the encoding.TextUnmarshaler interface.

28 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

func (Calends) MarshalJSON() ([]byte, error)

Returns A byte slice containing the marshalled JSON.

Return type []byte

Returns Any error that occurs.

Return type error

Implements the encoding/json.Marshaler interface.

func (*Calends) UnmarshalJSON(in []byte)→ error

Parameters

• in ([]byte) – A byte slice containing the marshalled JSON.

Returns Any error that occurs.

Return type error

Implements the encoding/json.Unmarshaler interface.

4.3 Using Calends in C/C++

Calends exposes a very small handful of things for use outside the library itself. Documented here are the parts most
users will interact with.

Calends also exposes functions and types for extending the library’s functionality. These are covered in the Custom
Calendars in C/C++ section.

Note: Because C doesn’t support objects, the library returns an identifier instead of an actual Calends value, keeping
a reference to the internal Calends object in the Golang portions of the process space. This identifier is specific to the
process in which it is generated, and is therefore only useful within that process itself. To save the value for later, use
one of the marshalling functions documented below, and then the corresponding unmarshalling function to retrieve it
elsewhere.

4.3.1 Create

long long unsigned int Calends_create_string(char *value, char *calendar, char *format)
long long unsigned int Calends_create_string_range(char *start, char *end, char *calendar, char *format)
long long unsigned int Calends_create_string_start_period(char *start, char *duration, char *calendar, char

*format)
long long unsigned int Calends_create_string_end_period(char *duration, char *end, char *calendar, char

*format)
long long unsigned int Calends_create_long_long(long long int value, char *calendar, char *format)
long long unsigned int Calends_create_long_long_range(long long int start, long long int end, char *calendar,

char *format)
long long unsigned int Calends_create_long_long_start_period(long long int start, long long int duration,

char *calendar, char *format)
long long unsigned int Calends_create_long_long_end_period(long long int duration, long long int end, char

*calendar, char *format)

4.3. Using Calends in C/C++ 29

Calends: Documented, Release 0.1.0

long long unsigned int Calends_create_double(double value, char *calendar, char *format)
long long unsigned int Calends_create_double_range(double start, double end, char *calendar, char *format)
long long unsigned int Calends_create_double_start_period(double start, double duration, char *calendar,

char *format)
long long unsigned int Calends_create_double_end_period(double duration, double end, char *calendar, char

*format)

Parameters

• value (char* or long long int or double) – The value to parse the date/time from.

• start (char* or long long int or double) – The value to parse the start date/time from.

• duration (char* or long long int or double) – The value to parse the duration from.

• end (char* or long long int or double) – The value to parse the end date/time from.

• calendar (char*) – The calendar system to parse the date(s)/time(s) with.

• format (char*) – The format the date(s)/time(s) is/are expected to use.

Returns A new Calends object identifier

Return type long long unsigned int

Creates a new Calends object identifier, using calendar to select a calendar system, and format to parse the
contents of value, start, end , and/or duration into the Calends object’s internal instants.

4.3.2 Read

char *Calends_date(long long unsigned int c, char *calendar, char *format)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• calendar (char*) – The calendar system to format the date/time with.

• format (char*) – The format the date/time is expected to be in.

Returns The start date of the Calends object

Return type char*

Retrieves the start date of the Calends object as a string. The value is generated by the calendar system given
in calendar, according to the format string in format.

char *Calends_end_date(long long unsigned int c, char *calendar, char *format)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• calendar (char*) – The calendar system to format the date/time with.

• format (char*) – The format the date/time is expected to be in.

Returns The end date of the Calends object

Return type char*

Retrieves the end date of the Calends object as a string. The value is generated by the calendar system given in
calendar, according to the format string in format.

30 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

char *Calends_duration(long long unsigned int c)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

Returns The duration of the Calends object

Return type char*

Retrieves the duration of the Calends object as a string. This value will be 0 if the Calends object is an instant.

4.3.3 Update

long long unsigned int Calends_with_date_string(long long unsigned int c, char *value, char *calendar, char
*format)

long long unsigned int Calends_with_date_long_long(long long unsigned int c, long long int value, char
*calendar, char *format)

long long unsigned int Calends_with_date_double(long long unsigned int c, double value, char *calendar, char
*format)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• value (char* or long long int or double) – The value to parse the date/time from.

• calendar (char*) – The calendar system to parse the date/time with.

• format (char*) – The format the date/time is expected to use.

Returns A new Calends object identifier

Return type long long unsigned int

Sets the start date of a Calends object, based on the Calends object’s current value. The inputs are the same as
for the Calends_create_{type}() functions, above.

long long unsigned int Calends_with_end_date_string(long long unsigned int c, char *value, char *calendar,
char *format)

long long unsigned int Calends_with_end_date_long_long(long long unsigned int c, long long int value, char
*calendar, char *format)

long long unsigned int Calends_with_end_date_double(long long unsigned int c, double value, char *calendar,
char *format)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• value (char* or long long int or double) – The value to parse the date/time from.

• calendar (char*) – The calendar system to parse the date/time with.

• format (char*) – The format the date/time is expected to use.

Returns A new Calends object identifier

Return type long long unsigned int

Sets the end date of a Calends object, based on the Calends object’s current value. The inputs are the same as
for the Calends_create_{type}() functions, above.

4.3. Using Calends in C/C++ 31

Calends: Documented, Release 0.1.0

long long unsigned int Calends_with_duration_string(long long unsigned int c, char *duration, char
*calendar)

long long unsigned int Calends_with_duration_long_long(long long unsigned int c, long long int duration,
char *calendar)

long long unsigned int Calends_with_duration_double(long long unsigned int c, double duration, char
*calendar)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• duration (char* or long long int or double) – The value to parse the new duration
from.

• calendar (char*) – The calendar system to parse the date/time with.

Returns A new Calends object identifier

Return type long long unsigned int

Sets the duration of a Calends object, by adjusting its end point, and using the current start point as an anchor.
The duration value is interpreted by the calendar system given in calendar, so is subject to any of its rules.

long long unsigned int Calends_with_duration_from_end_string(long long unsigned int c, char *duration,
char *calendar)

long long unsigned int Calends_with_duration_from_end_long_long(long long unsigned int c, long long int
duration, char *calendar)

long long unsigned int Calends_with_duration_from_end_double(long long unsigned int c, double duration,
char *calendar)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• duration (char* or long long int or double) – The value to parse the new duration
from.

• calendar (char*) – The calendar system to parse the date/time with.

Returns A new Calends object identifier

Return type long long unsigned int

Sets the duration of a Calends object, by adjusting its start point, and using the current end point as an anchor.
The duration value is interpreted by the calendar system given in calendar, so is subject to any of its rules.

4.3.4 Destroy

void Calends_release(long long unsigned int c)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

Releases an internal Calends object, freeing its associated memory. Since the memory used in this case is kept
within the Golang portion of the process space, we don’t have access to free that memory using more conventional
C/C++ methods, so this function offers that functionality instead.

32 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

4.3.5 Manipulate

long long unsigned int Calends_add_string(long long unsigned int c, char *offset, char *calendar)
long long unsigned int Calends_add_long_long(long long unsigned int c, long long int offset, char *calendar)
long long unsigned int Calends_add_double(long long unsigned int c, double offset, char *calendar)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• offset (char*) – The value to parse the offset from.

• calendar (char*) – The calendar system to parse the date/time with.

Returns A new Calends object identifier

Return type long long unsigned int

Increases the end date of the Calends object’s current value by offset, as interpreted by the calendar system
given in calendar.

long long unsigned int Calends_add_from_end_string(long long unsigned int c, char *offset, char *calendar)
long long unsigned int Calends_add_from_end_long_long(long long unsigned int c, long long int offset, char

*calendar)
long long unsigned int Calends_add_from_end_double(long long unsigned int c, double offset, char *calendar)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• offset (char*) – The value to parse the offset from.

• calendar (char*) – The calendar system to parse the date/time with.

Returns A new Calends object identifier

Return type long long unsigned int

Increases the start date of the Calends object’s current value by offset, as interpreted by the calendar system
given in calendar.

long long unsigned int Calends_subtract_string(long long unsigned int c, char *offset, char *calendar)
long long unsigned int Calends_subtract_long_long(long long unsigned int c, long long int offset, char

*calendar)
long long unsigned int Calends_subtract_double(long long unsigned int c, double offset, char *calendar)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• offset (char*) – The value to parse the offset from.

• calendar (char*) – The calendar system to parse the date/time with.

Returns A new Calends object identifier

Return type long long unsigned int

Works the same as Calends_add_{type}(), except it decreases the start date, rather than increasing it.

long long unsigned int Calends_subtract_from_end_string(long long unsigned int c, char *offset, char
*calendar)

4.3. Using Calends in C/C++ 33

Calends: Documented, Release 0.1.0

long long unsigned int Calends_subtract_from_end_long_long(long long unsigned int c, long long int offset,
char *calendar)

long long unsigned int Calends_subtract_from_end_double(long long unsigned int c, double offset, char
*calendar)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• offset (char*) – The value to parse the offset from.

• calendar (char*) – The calendar system to parse the date/time with.

Returns A new Calends object identifier

Return type long long unsigned int

Works the same as Calends_add_from_end_{type}(), except it decreases the end date, rather than increasing
it.

long long unsigned int Calends_next_string(long long unsigned int c, char *offset, char *calendar)
long long unsigned int Calends_next_long_long(long long unsigned int c, long long int offset, char *calendar)
long long unsigned int Calends_next_double(long long unsigned int c, double offset, char *calendar)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• offset (char*) – The value to parse the offset from.

• calendar (char*) – The calendar system to parse the date/time with.

Returns A new Calends object identifier

Return type long long unsigned int

Returns the identifier of a Calends object of offset duration (as interpreted by the calendar system given in
calendar), which abuts the current Calends object’s start value. If offset is empty, calendar is ignored,
and the current object’s duration is used instead.

long long unsigned int Calends_previous_string(long long unsigned int c, char *offset, char *calendar)
long long unsigned int Calends_previous_long_long(long long unsigned int c, long long int offset, char

*calendar)
long long unsigned int Calends_previous_double(long long unsigned int c, double offset, char *calendar)

Parameters

• c (long long unsigned int) – The identifier of the current Calends object.

• offset (char*) – The value to parse the offset from.

• calendar (char*) – The calendar system to parse the date/time with.

Returns A new Calends object identifier

Return type long long unsigned int

Returns the identifier of a Calends object of offset duration (as interpreted by the calendar system given in
calendar), which abuts the current Calends object’s end value. If offset is empty, calendar is ignored, and
the current object’s duration is used instead.

34 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

4.3.6 Combine

long long unsigned int Calends_merge(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to merge.

Returns A new Calends object identifier

Return type long long unsigned int

Returns a Calends object spanning from the earliest start date to the latest end date between c1 and c2.

long long unsigned int Calends_intersect(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to intersect.

Returns A new Calends object identifier

Return type long long unsigned int

Returns a Calends object spanning the overlap between c1 and c2. If c1 and c2 don’t overlap, returns an error.

long long unsigned int Calends_gap(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to gap.

Returns A new Calends object identifier

Return type long long unsigned int

Returns a Calends object spanning the gap between c1 and c2. If c1 and c2 overlap (and there is, therefore, no
gap to return), returns an error.

4.3.7 Compare

char *Calends_difference(long long unsigned int c1, long long unsigned int c2, char *mode)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

• mode (char*) – The comparison mode.

Returns The difference, as a decimal string

Return type char*

Returns the difference of c1 minus c2, using mode to select which values to use in the calculation. Valid modes
include:

• "start" - use the start date of both c1 and c2

4.3. Using Calends in C/C++ 35

Calends: Documented, Release 0.1.0

• "duration" - use the duration of both c1 and c2

• "end" - use the end date of both c1 and c2

• "start-end" - use the start of c1, and the end of c2

• "end-start" - use the end of c1, and the start of c2

signed char Calends_compare(long long unsigned int c1, long long unsigned int c2, char *mode)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

• mode (char*) – The comparison mode.

Returns A standard comparison result

Return type signed char

Returns -1 if c1 is less than c2, 0 if they are equal, and 1 if c1 is greater than c2, using mode to select which
values to use in the comparison. Valid modes are the same as for Calends_difference(), above.

signed char Calends_contains(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Checks whether c1 contains all of c2.

signed char Calends_overlaps(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Checks whether c1 overlaps with c2.

signed char Calends_abuts(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Checks whether c1 abuts c2 (that is, whether one begins at the same instant the other ends).

36 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

signed char Calends_is_same(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Checks whether c1 covers the same span of time as c2.

signed char Calends_is_shorter(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Compares the duration of c1 and c2.

signed char Calends_is_same_duration(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Compares the duration of c1 and c2.

signed char Calends_is_longer(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Compares the duration of c1 and c2.

signed char Calends_is_before(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Compares the entirety of c1 with the start date of c2.

4.3. Using Calends in C/C++ 37

Calends: Documented, Release 0.1.0

signed char Calends_starts_before(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Compares the start date of c1 with the start date of c2.

signed char Calends_ends_before(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Compares the end date of c1 with the start date of c2.

signed char Calends_is_during(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Checks whether the entirety of c1 lies between the start and end dates of c2.

signed char Calends_starts_during(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Checks whether the start date of c1 lies between the start and end dates of c2.

signed char Calends_ends_during(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Checks whether the end date of c1 lies between the start and end dates of c2.

38 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

signed char Calends_is_after(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Compares the entirety of c1 with the end date of c2.

signed char Calends_starts_after(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Compares the start date of c1 with the end date of c2.

signed char Calends_ends_after(long long unsigned int c1, long long unsigned int c2)

Parameters

• c1 (long long unsigned int) – The identifier of the current Calends object.

• c2 (long long unsigned int) – The identifier of the Calends object to compare.

Returns The result of the comparison

Return type signed char

Compares the end date of c1 with the end date of c2.

4.3.8 Export

char *Calends_string(long long unsigned int c)

Parameters

• c (long long unsigned int) – The Calends object to convert.

Returns The string representation of the current value.

Return type char*

Converts the value of c to a string.

char *Calends_encode_text(long long unsigned int c)

Parameters

• c (long long unsigned int) – The Calends object to encode.

Returns The encoded representation of the current value.

Return type char*

Encodes the value of c as text, for external storage.

4.3. Using Calends in C/C++ 39

Calends: Documented, Release 0.1.0

long long unsigned int Calends_decode_text(char *in)

Parameters

• in (char*) – The encoded representation of a Calends value.

Returns The decoded Calends object’s identifier.

Return type long long unsigned int

Decodes the value of in to a new Calends object.

char *Calends_encode_json(long long unsigned int c)

Parameters

• c (long long unsigned int) – The Calends object to encode.

Returns The encoded representation of the current value.

Return type char*

Encodes the value of c as JSON, for external communication.

long long unsigned int Calends_decode_json(char *in)

Parameters

• in (char*) – The encoded representation of a Calends value.

Returns The decoded Calends object’s identifier.

Return type long long unsigned int

Decodes the value of in to a new Calends object.

4.3.9 Error Handling

void Calends_register_panic_handler(Calends_panic_handler callback)

Parameters

• callback (void function(char*)) – A panic handler function.

When errors happen, Go normally returns the error as an additional return value. Since most programming
languages don’t support this, the C/C++ interface to the library instead relies on a Golang feature called a panic,
which is a lot like an exception in many other languages. This function allows users to register a callback function
of their own to handle the error conditions which might come up. callback should accept a char* containing
the error message supplied by the library, and return nothing.

4.4 Using Calends in Dart

Calends exposes a very small handful of things for use outside the library itself. One is the Calends class, documented
here, which should be the only interface users of the library ever need to touch.

Another thing Calends exposes is the TAI64Time class, used to store and manipulate the instants of time which make up
a Calends instance. The rest are interfaces for extending the library’s functionality. These are covered in the Custom
Calendars in Dart section.

40 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Note: Calends objects are immutable - all methods return a new Calends object where they might otherwise alter
the current one. This has the side effect of using more memory to perform manipulations than updating values on an
existing object would. It makes many operations safer, though, than mutable objects would allow.

class calends.Calends

The main entry point to Calends and its functionality.

Calends.initialize()

Sets up the error handling and otherwise preps the library for use. Run this before doing anything else!

4.4.1 Create

Calends.(stamp, calendar, format)

Arguments

• stamp (dynamic()) – The timestamp to parse the date(s)/time(s) from.

• calendar (String()) – The calendar system to parse the date(s)/time(s) with.

• format (String()) – The format the date(s)/time(s) is/are expected to use.

Throws CalendsException() – when an error occurs

Creates a new Calends object, using calendar to select a calendar system, and format to parse the
contents of stamp into the Calends object’s internal instants. The type of stamp can vary based on
the calendar system itself, but generally speaking can always be a string.

In any case, the stamp can also be a Map, where the String keys are any two of start, end, and
duration. If all three are provided, duration is ignored in favor of calculating it directly.

The calendar system then converts stamp to a pair of TAI64Time instants, which the Calends object
sets to the appropriate internal value.

4.4.2 Read

Calends.date(calendar, format)

Arguments

• calendar (String()) – The calendar system to format the date/time with.

• format (String()) – The format the date/time is expected to be in.

Returns The start date of the Calends object

Return type string

Throws CalendsException() – when an error occurs

Retrieves the start date of the Calends object as a string. The value is generated by the calendar
system given in calendar, according to the format string in format.

Calends.endDate(calendar, format)

Arguments

• calendar (String()) – The calendar system to format the date/time with.

4.4. Using Calends in Dart 41

Calends: Documented, Release 0.1.0

• format (String()) – The format the date/time is expected to be in.

Returns The end date of the Calends object

Return type string

Throws CalendsException() – when an error occurs

Retrieves the end date of the Calends object as a string. The value is generated by the calendar
system given in calendar, according to the format string in format.

Calends.duration()

Returns The duration of the Calends object

Return type string

Retrieves the duration of the Calends object as a decimal string. This value will be 0 if the Calends
object contains an instant.

4.4.3 Update

Calends.withDate(stamp, calendar, format)

Arguments

• stamp (dynamic()) – The value to parse the date/time from.

• calendar (String()) – The calendar system to parse the date/time with.

• format (String()) – The format the date/time is expected to use.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Returns a Calends object with a start date based on the current Calends object’s value. The inputs
are the same as for Calends.(), above, except the String→ value map option isn’t available, since
you’re already specifically setting the start value explicitly.

Calends.withEndDate(value, calendar, format)

Arguments

• stamp (dynamic()) – The value to parse the date/time from.

• calendar (String()) – The calendar system to parse the date/time with.

• format (String()) – The format the date/time is expected to use.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Returns a Calends object with an end date based on the current Calends object’s value. The inputs
are the same as for Calends.(), above, except the String→ value map option isn’t available, since
you’re already specifically setting the end value explicitly.

42 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Calends.withDuration(duration, calendar)

Arguments

• duration (dynamic()) – The value to parse the new duration from.

• calendar (String()) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Returns a Calends object with a duration set by adjusting the current Calends object’s end point,
and using its start point as an anchor. The duration value is interpreted by the calendar system
given in calendar, so is subject to any of its rules.

Calends.withDurationFromEnd(duration, calendar)

Arguments

• duration (dynamic()) – The value to parse the new duration from.

• calendar (String()) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Returns a Calends object with a duration set by adjusting the current Calends object’s start point,
and using its end point as an anchor. The duration value is interpreted by the calendar system given
in calendar, so is subject to any of its rules.

4.4.4 Manipulate

Calends.add(offset, calendar)

Arguments

• offset (dynamic()) – The value to parse the offset from.

• calendar (String()) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Increases the end date of the Calends object’s current value by offset, as interpreted by the calendar
system given in calendar, and returns a new Calends object with the result.

Calends.addFromEnd(offset, calendar)

Arguments

• offset (dynamic()) – The value to parse the offset from.

• calendar (String()) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

4.4. Using Calends in Dart 43

Calends: Documented, Release 0.1.0

Throws CalendsException() – when an error occurs

Increases the start date of the Calends object’s current value by offset, as interpreted by the cal-
endar system given in calendar, and returns a new Calends object with the result.

Calends.subtract(offset, calendar)

Arguments

• offset (dynamic()) – The value to parse the offset from.

• calendar (String()) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Works the same as add(), except it decreases the start date, rather than increasing it.

Calends.subtractFromEnd(offset, calendar)

Arguments

• offset (dynamic()) – The value to parse the offset from.

• calendar (String()) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Works the same as addFromEnd(), except it decreases the end date, rather than increasing it.

Calends.next(offset, calendar)

Arguments

• offset (dynamic()) – The value to parse the offset from.

• calendar (String()) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Returns a Calends object of offset duration (as interpreted by the calendar system given in
calendar), which abuts the current Calends object’s value. If offset is empty, calendar is
ignored, and the current object’s duration is used instead.

Calends.previous(offset, calendar)

Arguments

• offset (dynamic()) – The value to parse the offset from.

• calendar (String()) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

44 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Returns a Calends object of offset duration (as interpreted by the calendar system given in
calendar), which abuts the current Calends object’s value. If offset is empty, calendar is
ignored, and the current object’s duration is used instead.

4.4.5 Combine

Calends.merge(c2)

Arguments

• c2 (Calends()) – The Calends object to merge.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Returns a Calends object spanning from the earliest start date to the latest end date between the
current Calends object and c2.

Calends.intersect(c2)

Arguments

• c2 (Calends()) – The Calends object to intersect.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Returns a Calends object spanning the overlap between the current Calends object and c2. If the
current object and c2 don’t overlap, throws an error.

Calends.gap(c2)

Arguments

• c2 (Calends()) – The Calends object to gap.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Returns a Calends object spanning the gap between the current Calends object and c2. If the
current object and c2 overlap (and there is, therefore, no gap to return), throws an error.

4.4.6 Compare

Calends.difference(c2, mode)

Arguments

• c2 (Calends()) – The Calends object to compare.

• mode (String()) – The comparison mode.

Returns The difference, as a decimal string

4.4. Using Calends in Dart 45

Calends: Documented, Release 0.1.0

Return type string

Returns the difference of the current Calends object minus c2, using mode to select which values to
use in the calculation. Valid modes include:

• start - use the start date of both the current object and c2

• duration - use the duration of both the current object and c2

• end - use the end date of both the current object and c2

• start-end - use the start of the current object, and the end of c2

• end-start - use the end of the current object, and the start of c2

Calends.compare(c2, mode)

Arguments

• c2 (Calends()) – The Calends object to compare.

• mode (String()) – The comparison mode.

Returns A standard comparison result

Return type int

Returns -1 if the current Calends object is less than c2, 0 if they are equal, and 1 if the current
object is greater than c2, using mode to select which values to use in the comparison. Valid modes
are the same as for difference(), above.

Calends.contains(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object contains all of c2.

Calends.overlaps(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object overlaps with c2.

Calends.abuts(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object abuts c2 (that is, whether one begins at the same instant
the other ends).

46 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Calends.isSame(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object covers the same span of time as c2. Also available via
the == operator.

Calends.isShorter(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends object and c2.

Calends.isSameDuration(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends object and c2.

Calends.isLonger(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends object and c2.

Calends.isBefore(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the entirety of the current Calends object with the start date of c2. Also available as the
< operator.

Calends.startsBefore(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

4.4. Using Calends in Dart 47

Calends: Documented, Release 0.1.0

Return type bool

Compares the start date of the current Calends object with the start date of c2.

Calends.endsBefore(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the end date of the current Calends object with the start date of c2.

Calends.isDuring(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the entirety of the current Calends object lies between the start and end dates of
c2.

Calends.startsDuring(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the start date of the current Calends object lies between the start and end dates of
c2.

Calends.endsDuring(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the end date of the current Calends object lies between the start and end dates of
c2.

Calends.isAfter(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the entirety of the current Calends object with the end date of c2. Also available as the
> operator.

48 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Calends.startsAfter(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the start date of the current Calends object with the end date of c2.

Calends.endsAfter(c2)

Arguments

• c2 (Calends()) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the end date of the current Calends object with the end date of c2.

4.4.7 Export

It’s possible to export Calends values in a couple of ways, and then re-import them later/elsewhere. The text encoding
is the less portable option, though, so we strongly recommend using JSON instead.

Calends.encodeText()

Returns The text-encoded value of the Calends instance.

Return type String

Throws CalendsException() – when an error occurs

Calends.decodeText(encoded)

Arguments

• encoded (String()) – The text-encoded value to import.

Returns A new Calends object

Return type Calends

Throws CalendsException() – when an error occurs

Calends.encodeJson()

Returns The JSON-encoded value of the Calends instance.

Return type String

Throws CalendsException() – when an error occurs

Calends.decodeJson(encoded)

Arguments

• encoded (String()) – The JSON-encoded value to import.

Returns A new Calends object

Return type Calends

4.4. Using Calends in Dart 49

Calends: Documented, Release 0.1.0

Throws CalendsException() – when an error occurs

If you just need a String value for display purposes, and can’t use the date()method to format it to a given calendar
system, there is a fallback mechanism in the form of the toString() method. This value is neither human-readable
nor machine-importable, so it should only be used for debugging.

Calends.toString()

Returns A non-portable representation of the Calends instance.

Return type String

Throws CalendsException() – when an error occurs

4.4.8 Error Handling

class calends.CalendsException

A very simple exception class, directly extending Exception. It is thrown by the library for all encountered
errors.

4.5 Using Calends in JS/WASM

Calends exposes a very small handful of things for use outside the library itself. One is the Calends() class, docu-
mented here, which should be the only interface users of the library ever need to touch.

Another thing Calends exposes is the TAI64Time() class, used to store and manipulate the instants of time which
make up a Calends() moment or instance. The rest are interfaces for extending the library’s functionality. These are
covered in the Custom Calendars in JS/WASM section.

Note: Calends() objects are immutable - all methods return a new Calends() object where they might otherwise
alter the current one. This has the side effect of using more memory to perform manipulations than updating values on
an existing object would. It makes many operations safer, though, than mutable objects would allow.

4.5.1 Create

class calends.Calends(stamp, calendar, format)

Arguments

• stamp (mixed()) – The value to parse the date(s)/time(s) from.

• calendar (string()) – The calendar system to parse the date(s)/time(s) with.

• format (string()) – The format the date(s)/time(s) is/are expected to use.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Creates a new Calends() object, using calendar to select a calendar system, and format to parse the contents
of stamp into the Calends() object’s internal instants. The type of stamp can vary based on the calendar
system itself, but generally speaking can always be a string.

50 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

In any case, the value can always be an associative array, where the keys are any two of start, end, and
duration. If all three are provided, duration is ignored in favor of calculating it directly.

The calendar system then converts stamp to a TAI64Time() instant, which the Calends() object sets to the
appropriate internal value.

4.5.2 Read

Calends.date(calendar, format)

Arguments

• calendar (string()) – The calendar system to format the date/time with.

• format (string()) – The format the date/time is expected to be in.

Returns The start date of the Calends() object

Return type string

Throws CalendsException() – when an error occurs

Retrieves the start date of the Calends() object as a string. The value is generated by the calendar
system given in calendar, according to the format string in format.

Calends.endDate(calendar, format)

Arguments

• calendar (string()) – The calendar system to format the date/time with.

• format (string()) – The format the date/time is expected to be in.

Returns The end date of the Calends() object

Return type string

Throws CalendsException() – when an error occurs

Retrieves the end date of the Calends() object as a string. The value is generated by the calendar
system given in calendar, according to the format string in format.

Calends.duration()

Returns The duration of the Calends() object

Return type string

Retrieves the duration of the Calends() object as a decimal string. This value will be 0 if the
Calends() object is an instant.

4.5.3 Update

Calends.withDate(stamp, calendar, format)

Arguments

• stamp (mixed()) – The value to parse the date/time from.

• calendar (string()) – The calendar system to parse the date/time with.

• format (string()) – The format the date/time is expected to use.

4.5. Using Calends in JS/WASM 51

Calends: Documented, Release 0.1.0

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Returns a Calends() object with a start date based on the current Calends() object’s value. The
inputs are the same as for Calends(), above, except the string → value map option isn’t available,
since you’re already specifically setting the start value explicitly.

Calends.withEndDate(stamp, calendar, format)

Arguments

• stamp (mixed()) – The value to parse the date/time from.

• calendar (string()) – The calendar system to parse the date/time with.

• format (string()) – The format the date/time is expected to use.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Returns a Calends() object with an end date based on the current Calends() object’s value. The
inputs are the same as for Calends(), above, except the string → value map option isn’t available,
since you’re already specifically setting the end value explicitly.

Calends.withDuration(duration, calendar)

Arguments

• duration (string()) – The value to parse the new duration from.

• calendar (string()) – The calendar system to parse the date/time with.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Returns a Calends() object with a duration set by adjusting the current Calends() object’s end
point, and using its start point as an anchor. The duration value is interpreted by the calendar
system given in calendar, so is subject to any of its rules.

Calends.withDurationFromEnd(duration, calendar)

Arguments

• duration (string()) – The value to parse the new duration from.

• calendar (string()) – The calendar system to parse the date/time with.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Returns a Calends() object with a duration set by adjusting the current Calends() object’s start
point, and using its end point as an anchor. The duration value is interpreted by the calendar system
given in calendar, so is subject to any of its rules.

52 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

4.5.4 Manipulate

Calends.add(offset, calendar)

Arguments

• offset (string()) – The value to parse the offset from.

• calendar (string()) – The calendar system to parse the date/time with.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Increases the end date of the Calends() object’s current value by offset, as interpreted by the
calendar system given in calendar, and returns a new Calends() object with the result.

Calends.addFromEnd(offset, calendar)

Arguments

• offset (string()) – The value to parse the offset from.

• calendar (string()) – The calendar system to parse the date/time with.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Increases the start date of the Calends() object’s current value by offset, as interpreted by the
calendar system given in calendar, and returns a new Calends() object with the result.

Calends.subtract(offset, calendar)

Arguments

• offset (string()) – The value to parse the offset from.

• calendar (string()) – The calendar system to parse the date/time with.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Works the same as add(), except it decreases the start date, rather than increasing the end date.

Calends.subtractFromEnd(offset, calendar)

Arguments

• offset (string()) – The value to parse the offset from.

• calendar (string()) – The calendar system to parse the date/time with.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Works the same as addFromEnd(), except it decreases the end date, rather than increasing the start
date.

4.5. Using Calends in JS/WASM 53

Calends: Documented, Release 0.1.0

Calends.next(offset, calendar)

Arguments

• offset (string()) – The value to parse the offset from.

• calendar (string()) – The calendar system to parse the date/time with.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Returns a Calends() object of offset duration (as interpreted by the calendar system given in
calendar), which abuts the current Calends() object’s value. If offset is empty, calendar is
ignored, and the current object’s duration is used instead.

Calends.previous(offset, calendar)

Arguments

• offset (string()) – The value to parse the offset from.

• calendar (string()) – The calendar system to parse the date/time with.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Returns a Calends() object of offset duration (as interpreted by the calendar system given in
calendar), which abuts the current Calends() object’s value. If offset is empty, calendar is
ignored, and the current object’s duration is used instead.

4.5.5 Combine

Calends.merge(other)

Arguments

• other (Calends()) – The Calends() object to merge.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Returns a Calends() object spanning from the earliest start date to the latest end date between the
current Calends() object and other.

Calends.intersect(other)

Arguments

• other (Calends()) – The Calends() object to intersect.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

54 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Returns a Calends() object spanning the overlap between the current Calends() object and other.
If the current object and other don’t overlap, throws an error.

Calends.gap(other)

Arguments

• other (Calends()) – The Calends() object to gap.

Returns A new Calends() object

Return type Calends()

Throws CalendsException() – when an error occurs

Returns a Calends() object spanning the gap between the current Calends() object and other. If
the current object and other overlap (and there is, therefore, no gap to return), throws an error.

4.5.6 Compare

Calends.difference(other, mode)

Arguments

• other (Calends()) – The Calends() object to compare.

• mode (string()) – The comparison mode.

Returns The difference, as a decimal string

Return type string

Returns the difference of the current Calends() object minus other, using mode to select which
values to use in the calculation. Valid modes include:

• start - use the start date of both the current object and other

• duration - use the duration of both the current object and other

• end - use the end date of both the current object and other

• start-end - use the start of the current object, and the end of other

• end-start - use the end of the current object, and the start of other

Calends.compare(other, mode)

Arguments

• other (Calends()) – The Calends() object to compare.

• mode (string()) – The comparison mode.

Returns A standard comparison result

Return type int

Returns -1 if the current Calends() object is less than other, 0 if they are equal, and 1 if the
current object is greater than other, using mode to select which values to use in the comparison.
Valid modes are the same as for Calends.difference(), above.

Calends.contains(other)

Arguments

• other (Calends()) – The Calends() object to compare.

4.5. Using Calends in JS/WASM 55

Calends: Documented, Release 0.1.0

Returns The result of the comparison

Return type bool

Checks whether the current Calends() object contains all of other.

Calends.overlaps(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends() object overlaps with other.

Calends.abuts(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends() object abuts other (that is, whether one begins at the same
instant the other ends).

Calends.isSame(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends() object covers the same span of time as other.

Calends.isShorter(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends() object and other.

Calends.isSameDuration(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends() object and other.

56 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Calends.isLonger(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends() object and other.

Calends.isBefore(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Compares the entirety of the current Calends() object with the start date of other.

Calends.startsBefore(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Compares the start date of the current Calends() object with the start date of other.

Calends.endsBefore(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Compares the end date of the current Calends() object with the start date of other.

Calends.isDuring(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Checks whether the entirety of the current Calends() object lies between the start and end dates of
other.

Calends.startsDuring(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

4.5. Using Calends in JS/WASM 57

Calends: Documented, Release 0.1.0

Return type bool

Checks whether the start date of the current Calends() object lies between the start and end dates
of other.

Calends.endsDuring(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Checks whether the end date of the current Calends() object lies between the start and end dates of
other.

Calends.isAfter(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Compares the entirety of the current Calends() object with the end date of other.

Calends.startsAfter(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Compares the start date of the current Calends() object with the end date of other.

Calends.endsAfter(other)

Arguments

• other (Calends()) – The Calends() object to compare.

Returns The result of the comparison

Return type bool

Compares the end date of the current Calends() object with the end date of other.

4.5.7 Export

It is possible to export Calends() objects for use later/elsewhere, or to import such values for use in your own code.
There are two formats for this purpose: text encoding and JSON encoding. Needless to say, the JSON encoding is
considerably more portable, and therefore preferred. Still, both are supported, and as such both are documented here.
YMMV.

Calends.toText()

Returns The text encoding of the Calends() object.

Return type string

58 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Calends.fromText(stamp)

Arguments

• stamp – The text encoded value to import.

Returns A new Calends() object

Return type Calends()

Calends.toJson()

Returns The JSON encoding of the Calends() object.

Return type string

Calends.fromJson(stamp)

Arguments

• stamp – The JSON encoded value to import.

Returns A new Calends() object

Return type Calends()

For logging, there’s also a toString() method; we don’t recommend using it directly since the output is neither
human-readable nor machine-importable.

In addition to the above, there’s improved JSON support in JS (go figure) with the following methods:

JSON.stringify(objectWithMomentChildren);

JSON.parse(stored, Calends.reviver);

4.5.8 Error Handling

class calends.CalendsError()

A very simple error class, directly extending Error(). It is thrown by the library for all encountered errors.

4.6 Using Calends in PHP

Calends exposes a very small handful of things for use outside the library itself. One is the Calends class, documented
here, which should be the only interface users of the library ever need to touch.

Another thing Calends exposes is the TAITime class, used to store and manipulate the instants of time which make up
a Calends instance. The rest are interfaces for extending the library’s functionality. These are covered in the Custom
Calendars in PHP section.

Note: Calends objects are immutable - all methods return a new Calends object where they might otherwise alter
the current one. This has the side effect of using more memory to perform manipulations than updating values on an
existing object would. It makes many operations safer, though, than mutable objects would allow.

4.6. Using Calends in PHP 59

Calends: Documented, Release 0.1.0

class Calends\Calends

The main entry point to Calends and its functionality. Calends objects can only be created with the Calends\
Calends::create function, and not directly. Calends does implement the Serializable interface, though,
so it’s safe to serialize/unserialize instances if you want.

4.6.1 Create

static Calends\Calends::create($value, $calendar, $format)

Parameters

• $value (mixed) – The value to parse the date(s)/time(s) from.

• $calendar (string) – The calendar system to parse the date(s)/time(s) with.

• $format (string) – The format the date(s)/time(s) is/are expected to use.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Creates a new Calends object, using $calendar to select a calendar system, and $format to parse the contents
of $value into the Calends object’s internal instants. The type of $value can vary based on the calendar
system itself, but generally speaking can always be a string.

In any case, the value can always be an associative array, where the keys are any two of start, end, and
duration. If all three are provided, duration is ignored in favor of calculating it directly.

The calendar system then converts $value to a TAITime instant, which the Calends object sets to the appropriate
internal value.

4.6.2 Read

Calends\Calends::date($calendar, $format)

Parameters

• $calendar (string) – The calendar system to format the date/time with.

• $format (string) – The format the date/time is expected to be in.

Returns The start date of the Calends object

Return type string

Throws CalendsException – when an error occurs

Retrieves the start date of the Calends object as a string. The value is generated by the calendar
system given in $calendar, according to the format string in $format.

Calends\Calends::endDate($calendar, $format)

Parameters

• $calendar (string) – The calendar system to format the date/time with.

• $format (string) – The format the date/time is expected to be in.

Returns The end date of the Calends object

60 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Return type string

Throws CalendsException – when an error occurs

Retrieves the end date of the Calends object as a string. The value is generated by the calendar
system given in $calendar, according to the format string in $format.

Calends\Calends::duration()

Returns The duration of the Calends object

Return type string

Retrieves the duration of the Calends object as a decimal string. This value will be 0 if the Calends
object is an instant.

4.6.3 Update

Calends\Calends::withDate($value, $calendar, $format)

Parameters

• $value (mixed) – The value to parse the date/time from.

• $calendar (string) – The calendar system to parse the date/time with.

• $format (string) – The format the date/time is expected to use.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Returns a Calends object with a start date based on the current Calends object’s value. The inputs
are the same as for Calends\Calends::create, above, except the string → value map option isn’t
available, since you’re already specifically setting the start value explicitly.

Calends\Calends::withEndDate($value, $calendar, $format)

Parameters

• $value (mixed) – The value to parse the date/time from.

• $calendar (string) – The calendar system to parse the date/time with.

• $format (string) – The format the date/time is expected to use.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Returns a Calends object with an end date based on the current Calends object’s value. The inputs
are the same as for Calends\Calends::create, above, except the string → value map option isn’t
available, since you’re already specifically setting the end value explicitly.

Calends\Calends::withDuration($duration, $calendar)

Parameters

• $duration (string) – The value to parse the new duration from.

• $calendar (string) – The calendar system to parse the date/time with.

4.6. Using Calends in PHP 61

Calends: Documented, Release 0.1.0

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Returns a Calends object with a duration set by adjusting the current Calends object’s end point,
and using its start point as an anchor. The $duration value is interpreted by the calendar system
given in $calendar, so is subject to any of its rules.

Calends\Calends::withDurationFromEnd($duration, $calendar)

Parameters

• $duration (string) – The value to parse the new duration from.

• $calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Returns a Calends object with a duration set by adjusting the current Calends object’s start point,
and using its end point as an anchor. The $duration value is interpreted by the calendar system
given in $calendar, so is subject to any of its rules.

4.6.4 Manipulate

Calends\Calends::add($offset, $calendar)

Parameters

• $offset (string) – The value to parse the offset from.

• $calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Increases the end date of the Calends object’s current value by $offset, as interpreted by the
calendar system given in $calendar, and returns a new Calends object with the result.

Calends\Calends::addFromEnd($offset, $calendar)

Parameters

• $offset (string) – The value to parse the offset from.

• $calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Increases the start date of the Calends object’s current value by $offset, as interpreted by the
calendar system given in $calendar, and returns a new Calends object with the result.

62 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Calends\Calends::subtract($offset, $calendar)

Parameters

• $offset (string) – The value to parse the offset from.

• $calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Works the same as add , except it decreases the start date, rather than increasing it.

Calends\Calends::subtractFromEnd($offset, $calendar)

Parameters

• $offset (string) – The value to parse the offset from.

• $calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Works the same as addFromEnd , except it decreases the end date, rather than increasing it.

Calends\Calends::next($offset, $calendar)

Parameters

• $offset (string) – The value to parse the offset from.

• $calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Returns a Calends object of $offset duration (as interpreted by the calendar system given in
$calendar), which abuts the current Calends object’s value. If $offset is empty, $calendar
is ignored, and the current object’s duration is used instead.

Calends\Calends::previous($offset, $calendar)

Parameters

• $offset (string) – The value to parse the offset from.

• $calendar (string) – The calendar system to parse the date/time with.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Returns a Calends object of $offset duration (as interpreted by the calendar system given in
$calendar), which abuts the current Calends object’s value. If $offset is empty, $calendar
is ignored, and the current object’s duration is used instead.

4.6. Using Calends in PHP 63

Calends: Documented, Release 0.1.0

4.6.5 Combine

Calends\Calends::merge($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to merge.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Returns a Calends object spanning from the earliest start date to the latest end date between the
current Calends object and $c2.

Calends\Calends::intersect($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to intersect.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Returns a Calends object spanning the overlap between the current Calends object and $c2. If the
current object and $c2 don’t overlap, throws an error.

Calends\Calends::gap($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to gap.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

Returns a Calends object spanning the gap between the current Calends object and $c2. If the
current object and $c2 overlap (and there is, therefore, no gap to return), throws an error.

4.6.6 Compare

Calends\Calends::difference($c2, $mode)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

• $mode (string) – The comparison mode.

Returns The difference, as a decimal string

Return type string

Returns the difference of the current Calends object minus $c2, using $mode to select which values
to use in the calculation. Valid $modes include:

• start - use the start date of both the current object and $c2

64 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

• duration - use the duration of both the current object and $c2

• end - use the end date of both the current object and $c2

• start-end - use the start of the current object, and the end of $c2

• end-start - use the end of the current object, and the start of $c2

Calends\Calends::compare($c2, $mode)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

• $mode (string) – The comparison mode.

Returns A standard comparison result

Return type int

Returns -1 if the current Calends object is less than $c2, 0 if they are equal, and 1 if the current
object is greater than $c2, using $mode to select which values to use in the comparison. Valid $modes
are the same as for Calends\Calends::difference, above.

Calends\Calends::contains($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object contains all of $c2.

Calends\Calends::overlaps($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object overlaps with $c2.

Calends\Calends::abuts($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the current Calends object abuts $c2 (that is, whether one begins at the same instant
the other ends).

Calends\Calends::isSame($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

4.6. Using Calends in PHP 65

Calends: Documented, Release 0.1.0

Return type bool

Checks whether the current Calends object covers the same span of time as $c2.

Calends\Calends::isShorter($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends object and $c2.

Calends\Calends::isSameDuration($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends object and $c2.

Calends\Calends::isLonger($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the duration of the current Calends object and $c2.

Calends\Calends::isBefore($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the entirety of the current Calends object with the start date of $c2.

Calends\Calends::startsBefore($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the start date of the current Calends object with the start date of $c2.

Calends\Calends::endsBefore($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

66 Chapter 4. Usage of Calends

Calends: Documented, Release 0.1.0

Returns The result of the comparison

Return type bool

Compares the end date of the current Calends object with the start date of $c2.

Calends\Calends::isDuring($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the entirety of the current Calends object lies between the start and end dates of
$c2.

Calends\Calends::startsDuring($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the start date of the current Calends object lies between the start and end dates of
$c2.

Calends\Calends::endsDuring($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Checks whether the end date of the current Calends object lies between the start and end dates of
$c2.

Calends\Calends::isAfter($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the entirety of the current Calends object with the end date of $c2.

Calends\Calends::startsAfter($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the start date of the current Calends object with the end date of $c2.

4.6. Using Calends in PHP 67

Calends: Documented, Release 0.1.0

Calends\Calends::endsAfter($c2)

Parameters

• $c2 (Calends\Calends) – The Calends object to compare.

Returns The result of the comparison

Return type bool

Compares the end date of the current Calends object with the end date of $c2.

4.6.7 Export

It’s possible to export Calends values in a couple of ways. It implements Serializable and JsonSerializable,
as well as the __toString method, so the regular mechanisms for each of those are readily available and usable. In
addition, it also offers support for JSON-decoding values directly:

static Calends\Calends::jsonUnserialize($encoded)

Parameters

• $encoded (string) – The JSON-encoded value to import.

Returns A new Calends object

Return type Calends

Throws CalendsException – when an error occurs

4.6.8 Error Handling

class Calends\CalendsException

A very simple exception class, directly extending Exception. It is thrown by the library for all encountered
errors.

68 Chapter 4. Usage of Calends

CHAPTER

FIVE

CALENDAR SYSTEMS

The systems listed here are the built-in ones. This list is expected to grow significantly over time, as more and more
calendar systems are added. But you can also add custom systems to your apps without waiting for us to add them
ourselves – instructions for that are in the Custom Calendars section, below.

Throughout these documents, the term TAITime is used to refer generically to the TAI64NARUXTime, TAI64Time, or
TAITime type. The exact form of this name you’ll see most often varies by programming language, and is covered in
much more detail in the Custom Calendars section.

5.1 The Gregorian Calendar

Supports dates and times in the Gregorian calendar system, the current international standard for communicating dates
and times.

Calendar Name: gregorian

Supported Input Types:

• string

Supported Format Strings:

• Golang time package format strings (RFC1123 layout)

• C-style strptime()/strftime() format strings

Offsets:

• string with Gregorian time units

– must be relative times

– use full words instead of abbreviations for time units (such as seconds instead of just s)

5.2 Julian Day Count

A count of days since BCE 4713 Jan 01 12:00:00 UTC Julian (proleptic). Yes, that’s noon. This calendar
system is used mostly for astronomy purposes, though there is a modified variant with a narrower scope which counts
from midnight instead.

Calendar Name: jdc

Supported Input Types:

• string

69

Calends: Documented, Release 0.1.0

• integer

• arbitrary-precision floating point number of seconds

Supported Format Strings:

• full - the full, canonical Day Count

• fullday - the full Day Count, without the fractional time part

• fulltime - just the fractional time part of the full Day Count

• modified - an abbreviated Day Count, 2400000.5 less than the full (starts at midnight instead of
noon)

• day - the modified Day Count, without the fractional time part

• time - just the fractional time part of the modified Day Count

Offsets:

• number of days, as integer or float, via numeric or string types

– can include fractional days to indicate time

5.3 Stardates

Yes, the ones from Star Trek™.

The science fiction universe of Star Trek™ introduced a calendar system which was simultaneously futuristic (for the
time) and arbitrary. Over the decades since its initial use on screen, especially with the growing popularity of the
franchise, the “stardate” has been analyzed and explored and refined into a number of different variants, each trying to
reconcile the arbitrariness of the on-screen system into something consistent and usable.

This calendar system implementation is an attempt to combine all these variants into a single system, using the format
parameter to select which variant to use. It was originally ported in 2018 from code by Aaron Chong (2015 version),
under provisions of the MIT License. My thanks for Aaron’s use of the MIT License on the original code, which
allowed me to port it cleanly and legally.

Original source: http://rinsanity.weebly.com/files/theme/stardate_public.js

Calendar Name: stardate

Supported Input Types:

• string

• integer

• arbitrary-precision floating point number of seconds

Supported Format Strings:

• main - One of the older, more widely-accepted variants. Alternately called the “issue number style”
stardate, it’s a combined TOS/TNG variant, and the one used by Google Calendar. It was originally devised
by Andrew Main in CE 1994, with revisions made through CE 1997. See http://starchive.cs.umanitoba.ca/
?stardates/ for the full explanation of this variant.

• kennedy - In 2006, Richie Kennedy released another combined variant, this one designed to have a single
continuous count, more like the Julian Day Count than Main’s issue number system.

• pugh90s - Steve Pugh devised 2 separate variants, one of them in the 1990s, and the other later on, both
focused on the TNG era. They are unique in that, for negative stardates, the fractional part increases in the
opposite direction of the expected one. That is, 15129.999999999 would be followed by 15128.000000000

70 Chapter 5. Calendar Systems

http://rinsanity.weebly.com/files/theme/stardate_public.js
http://starchive.cs.umanitoba.ca/?stardates/
http://starchive.cs.umanitoba.ca/?stardates/

Calends: Documented, Release 0.1.0

instead of 15129.999999998. The original version used an unadjusted Gregorian year as the basis for the
duration of a given range of stardates, meaning that 0.05 units refer to a larger duration of time during a
leap year than it would otherwise.

• pughfixed - The later of Steve Pugh’s systems noted the discrepancy, and opted to adjust the year length
value to the actual average length of a Gregorian year, 365.2425 days. This means 0.05 units are always the
same duration, but does mean that the Gregorian year doesn’t generally start at the same point in consecutive
stardate ranges.

• schmidt - A joint effort between Andreas Schmidt and Graham Kennedy, this variant only covers TNG-era
stardates, and while it can be used proleptically, it ignores the alternate format used prior to TNG. It is also
virtually identical to pugh90s, but the fractional component increases normally for negative stardates.

• guide-equiv - One of five variants proposed by TrekGuide.com, this is the “out-of-universe equivalent”
calculation. It isn’t intended to be accurate for any use other than personal entertainment.

• guide-tng - The second of the five TrekGuide variants, this one is the current scale listed for TNG-era
stardates, and is show-accurate (or at least as close to it as feasible with an entirely arbitrary system). Note,
however, that it is only accurate for TNG-era dates.

• guide-tos - The third variant, then, covers the TOS-era stardates. Again, it is only accurate to the TOS
era.

• guide-oldtng - The fourth variant is no longer displayed on the TrekGuide site, and was actually pulled
from a previous version of the stardates page. It covers the TNG era only, and uses slightly different numbers
in its calculations than the current approach - specifically, it assumes Earth years cover 1000 stardates.

• guide-oldtos - Representing the very first set of calculations available in archives of the TrekGuide site,
the fifth TrekGuide variant assumes that 1000 stardates are one Earth year in the TOS era, and calculates
dates based on that assumption. This variant was replaced within seven months of that first archival, after
it was noticed that TOS-era stardates don’t fit a 1000-stardate model.

Note: This calendar system is not yet actually implemented.

• aldrich - A proof of concept originally written in C#, this variant results in dates very close to those
produced by Pugh’s and Schmidt’s, but uses a more simplified calculation to do it.

• red-dragon - A system devised by/for the Red Dragon Inn roleplaying forum site, it uses a fixed ratio of
roughly two and three quarters stardates per Earth day. It makes no representations about accuracy outside
the context of the site itself.

• sto-hynes - John Hynes, creator of the Digital Time site, offers a calculation for STO1 stardates which
appears to be the most accurate variant for those interested in generating those. The system doesn’t represent
itself as accurate outside the game, but is intentionally proleptic.

• sto-academy - Based on an online calculator provided by the STO Academy game help site, it is only
accurate for stardates within the game, and does not offer to calculate dates for the rest of the franchise.

• sto-tom - Another variant intended only to calculate STO stardates, this one was attributed to Major Tom,
and hosted as a Wolfram Alpha widget.

• sto-anthodev - Another STO variant, hosted on GitHub.

Offsets:

• Must be provided as a string in the format "stardate variant" or "variant stardate".
1 Star Trek™ Online

5.3. Stardates 71

Calends: Documented, Release 0.1.0

5.4 TAI64 Time

Supports times that are seconds since CE 1970-01-01 00:00:00 TAI Gregorian (plus 262, when in hexadecimal),
as defined at https://cr.yp.to/libtai/tai64.html (though this library includes extensions to the formats described there).
These values are also used internally, so this calendar system can be used to directly expose the underlying internal
values in a manner that allows them to be used elsewhere.

Calendar Name: tai64

Supported Input Types:

• string

• TAITime

Supported Format Strings:

• decimal - decimal; full (45 decimal places) resolution; number of seconds since CE 1970-01-01
00:00:00 TAI Gregorian

• tai64 - hexadecimal; just seconds; TAI64 External Representation

• tai64n - hexadecimal; with nanoseconds; TAI64N External Representation

• tai64na - hexadecimal; with attoseconds; TAI64NA External Representation

• tai64nar - hexadecimal; with rontoseconds; TAI64NAR External Representation

• tai64naru - hexadecimal; with udectoseconds; TAI64NARU External Representation

• tai64narux - hexadecimal; with xindectoseconds; TAI64NARUX External Representation

Offsets:

• TAITime object

• arbitrary-precision floating point number of seconds

• string with decimal format layout (above)

5.5 UNIX Time

Supports times that are seconds since CE 1970-01-01 00:00:00 UTC Gregorian, commonly used by computer
systems for storing date/time values, internally.

Calendar Name: unix

Supported Input Types:

• string

• integer

• arbitrary-precision floating point number of seconds

Supported Format Strings:

• values are always number of seconds since CE 1970-01-01 00:00:00 UTC Gregorian

– %d - integer string

– %f - floating point string

Offsets:

72 Chapter 5. Calendar Systems

https://cr.yp.to/libtai/tai64.html

Calends: Documented, Release 0.1.0

• number of seconds

5.5. UNIX Time 73

Calends: Documented, Release 0.1.0

74 Chapter 5. Calendar Systems

CHAPTER

SIX

CUSTOM CALENDARS

As with every other aspect of Calends, the custom calendar system support uses the same basic flow in every language,
with minor variations in each to account for the differences those languages introduce. As with every other aspect of
Calends, though, we’ve opted to document each language’s unique approaches separately, so you don’t have to do any
mental conversions yourself.

Note: Custom calendars are considered an advanced feature, so most users woun’t be using anything detailed here. It
can be nice to know how these things work under the hood, though, for those interested in that. Select your language,
below, and dig right in!

6.1 Custom Calendars in Golang

Adding new calendars to Calends is a fairly straightforward process. Implement one interface, or its three methods as
standalone functions, and then simply pass them to one of the two registration functions.

6.1.1 Define

The interface in question looks like this:

CalendarDefinition

func (CalendarDefinition) ToInternal(date interface{}, format string) (TAI64NARUXTime, error)

Parameters

• date (interface{}) – The input date. Should support string at the very minimum.

• format (string) – The format string for parsing the input date.

Returns The parsed internal timestamp.

Return type TAI64NARUXTime

Returns Any error that occurs.

Return type error

Converts an input date/time representation to an internal TAI64NARUXTime.

func (CalendarDefinition) FromInternal(stamp TAI64NARUXTime, format string) (string, error)

Parameters

• stamp (TAI64NARUXTime) – The internal timestamp value.

75

Calends: Documented, Release 0.1.0

• format (string) – The format string for formatting the output date.

Returns The formatted date/time.

Return type string

Returns Any error that occurs.

Return type error

Converts an internal TAI64NARUXTime to a date/time string.

func (CalendarDefinition) Offset(stamp TAI64NARUXTime, offset interface{})
(TAI64NARUXTime, error)

Parameters

• stamp (TAI64NARUXTime) – The internal timestamp value.

• offset (interface{}) – The input offset. Should support string at the very minimum.

Returns The adjusted internal timestamp.

Return type TAI64NARUXTime

Returns Any error that occurs.

Return type error

Adds the given offset to an internal TAI64NARUXTime.

6.1.2 Registration

Register

Once it is registered with the library, your calendar system can be used from anywhere in your application. To register
a system, pass it to one of the following two functions:

func RegisterObject(name string, definition CalendarDefinition, defaultFormat string)

Parameters

• name (string) – The name to register the calendar system under.

• definition (CalendarDefinition) – The calendar system itself.

• defaultFormat (string) – The default format string.

Registers a calendar system class, storing definition as name, and saving defaultFormat for later use while
parsing or formatting.

func RegisterElements(name string, toInternal ToInternal, fromInternal FromInternal, offset Offset,
defaultFormat string)

Parameters

• name (string) – The name to register the calendar system under.

• toInternal ((CalendarDefinition) ToInternal) – The function for parsing dates
into internal timestamps.

• fromInternal ((CalendarDefinition) FromInternal) – The function for formatting
internal timestamps as dates.

76 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

• offset ((CalendarDefinition) Offset) – The function for adding an offset to internal
timestamps.

• defaultFormat (string) – The default format string.

Registers a calendar system from its distinct functions. It does this by storing toInternal, fromInternal, and
offset as the elements of name, and saving defaultFormat for later use while parsing or formatting.

Unregister

func Unregister(name string)

Parameters

• name (string) – The name of the calendar system to remove.

Removes a calendar system from the callback list.

Check and List

func Registered(calendar string)→ bool

Parameters

• name (string) – The calendar system name to check for.

Returns Whether or not the calendar system is currently registered.

Return type bool

Returns whether or not a calendar system has been registered, yet.

func ListRegistered()→ []string

Returns The sorted list of calendar systems currently registered.

Return type []string

Returns the list of calendar systems currently registered.

6.1.3 Types and Values

Now we get to the inner workings that make calendar systems function – even the built-in ones. The majority of the
“magic” comes from the TAI64NARUXTime object itself, as a reliable way of storing the exact instants being calculated,
and the only way times are handled by the library itself. A handful of methods provide basic operations that calendar
system developers can use to simplify their conversions (adding and subtracting the values of other timestamps, and
importing/exporting timestamp values from/to arbitrary-precision floating point math/big.Floats, in particular), and
a couple of helpers exclusively handle adding and removing UTC leap second offsets. As long as you can convert your
dates to/from Unix timestamps in a string or math/big.Float, the rest is handled entirely by these helpers in the
library itself.

TAI64NARUXTime

Parameters

• Seconds (int64) – The number of TAI seconds since CE 1970-01-01 00:00:00 TAI.

• Nano (uint32) – The first 9 digits of the timestamp’s fractional component.

• Atto (uint32) – The 10th through 18th digits of the fractional component.

6.1. Custom Calendars in Golang 77

Calends: Documented, Release 0.1.0

• Ronto (uint32) – The 19th through 27th digits of the fractional component.

• Udecto (uint32) – The 28th through 36th digits of the fractional component.

• Xindecto (uint32) – The 37th through 45th digits of the fractional component.

TAI64NARUXTime stores a TAI64NARUX instant in a reliable, easily-converted format. Each 9-digit fractional
segment is stored in a separate 32-bit integer to preserve its value with a very high degree of accuracy, without
having to rely on string parsing or Golang’s math/big.* values.

Note: TAI vs UTC

You may have noticed that a TAI64Time object stores times in TAI seconds, not Unix seconds, with a time-
zone offset of TAI rather than UTC. This distinction is very important as it will affect internal calculations and
comparisons to mix the two up. TAI time is very similar to Unix time (itself based on UTC time), with one ma-
jor difference. While Unix/UTC seconds include the insertion and removal of “leap seconds” to keep the solar
zenith at local noon (which is useful for day-to-day living and planning), TAI seconds are a continuous count,
unconcerned with dates whatsoever. Indeed, the only reason a date was given in the description above was to
make it easier for human readers to know exactly when 0 TAI took place.

In other words, once you have a Unix timestamp of your instant calculated, be sure to convert it using UTCtoTAI
before returning the result to the rest of the library. And then, of course, you’ll also need to convert instants from
the library back using TAItoUTC before generating outputs.

func (TAI64NARUXTime) Add(z TAI64NARUXTime)→ TAI64NARUXTime

Parameters

• z (TAI64NARUXTime) – The timestamp to add to the current one.

Returns The sum of the two timestamps.

Return type TAI64NARUXTime

Calculates the sum of two TAI64NARUXTime values.

func (TAI64NARUXTime) Sub(z TAI64NARUXTime)→ TAI64NARUXTime

Parameters

• z (TAI64NARUXTime) – The timestamp to subtract from the current one.

Returns The difference of the two timestamps.

Return type TAI64NARUXTime

Calculates the difference of two TAI64NARUXTime values.

func (TAI64NARUXTime) String()→ string

Returns The decimal string representation of the current timestamp.

Return type string

Returns the decimal string representation of the TAI64NARUXTime value.

func (TAI64NARUXTime) HexString()→ string

Returns The hexadecimal string representation of the current timestamp.

Return type string

Returns the hexadecimal string representation of the TAI64NARUXTime value.

78 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

func (TAI64NARUXTime) Float()→ Float

Returns The arbitrary-precision floating point representation of the current timestamp.

Return type math/big.(*Float)

Returns the math/big.(*Float) representation of the TAI64NARUXTime value.

func (TAI64NARUXTime) MarshalText() ([]byte, error)

Returns A byte slice containing the marshalled text.

Return type []byte

Returns Any error that occurs.

Return type error

Implements the encoding.TextMarshaler interface.

func (TAI64NARUXTime) UnmarshalText(in []byte)→ error

Parameters

• in ([]byte) – A byte slice containing the marshalled text.

Returns Any error that occurs.

Return type error

Implements the encoding.TextUnmarshaler interface.

func (TAI64NARUXTime) MarshalBinary() ([]byte, error)

Returns A byte slice containing the marshalled binary data.

Return type []byte

Returns Any error that occurs.

Return type error

Implements the encoding.BinaryMarshaler interface.

func (TAI64NARUXTime) UnmarshalBinary(in []byte)→ error

Parameters

• in ([]byte) – A byte slice containing the marshalled binary data.

Returns Any error that occurs.

Return type error

Implements the encoding.BinaryUnmarshaler interface.

6.1. Custom Calendars in Golang 79

Calends: Documented, Release 0.1.0

6.1.4 Helpers

func TAI64NARUXTimeFromDecimalString(in string)→ TAI64NARUXTime

Parameters

• in (string) – The decimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAI64NARUXTime

Calculates a TAI64NARUXTime from its decimal string representation.

func TAI64NARUXTimeFromHexString(in string)→ TAI64NARUXTime

Parameters

• in (string) – The hexadecimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAI64NARUXTime

Calculates a TAI64NARUXTime from its hexadecimal string representation.

func TAI64NARUXTimeFromFloat(in Float)→ TAI64NARUXTime

Parameters

• in (math/big.Float) – The arbitrary-precision floating point representation of a timestamp
to calculate.

Returns The calculated timestamp.

Return type TAI64NARUXTime

Calculates a TAI64NARUXTime from its math/big.Float representation.

func UTCtoTAI(utc TAI64NARUXTime)→ TAI64NARUXTime

Parameters

• utc (TAI64NARUXTime) – The timestamp to remove the UTC offset from.

Returns The calculated timestamp.

Return type TAI64NARUXTime

Removes the UTC leap second offset from a TAI64NARUXTime value.

func TAItoUTC(tai TAI64NARUXTime)→ TAI64NARUXTime

Parameters

• tai (TAI64NARUXTime) – The timestamp to add the UTC offset to.

Returns The calculated timestamp.

Return type TAI64NARUXTime

Adds the UTC leap second offset to a TAI64NARUXTime value.

80 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

6.1.5 Errors

ErrUnsupportedInput

Used to indicate that the input date/time weren’t recognized by the calendar system, or that the data type is
incorrect.

ErrInvalidFormat

Indicates that the format string isn’t supported by the calendar system.

func ErrUnknownCalendar(calendar string)→ error

Parameters

• in (string) – The name of the unknown calendar system.

Returns Any error that occurs.

Return type error

Generates a “calendar not registered” error, including the calendar’s actual name in the error message.

6.2 Custom Calendars in C/C++

Adding new calendars to Calends is a fairly straightforward process. Implement a handful of functions, and then simply
pass them to the registration function.

6.2.1 Define

The functions in question look like this:

TAI64Time Calends_calendar_to_internal_string(char *calendar, char *date, char *format)
TAI64Time Calends_calendar_to_internal_long_long(char *calendar, long long int date, char *format)
TAI64Time Calends_calendar_to_internal_double(char *calendar, double date, char *format)
TAI64Time Calends_calendar_to_internal_tai(char *calendar, TAI64Time date)

Parameters

• calendar (char*) – The name of the target calendar system.

• date (char* or long long int or double or TAI64Time) – The input date.

• format (char*) – The format string for parsing the input date.

Returns The parsed internal timestamp.

Return type TAI64Time

Converts an input date/time representation to an internal TAI64Time.

char *Calends_calendar_from_internal(char *calendar, TAI64Time stamp, char *format)

Parameters

• calendar (char*) – The name of the target calendar system.

• stamp (TAI64Time) – The internal timestamp value.

• format (char*) – The format string for formatting the output date.

Returns The formatted date/time.

6.2. Custom Calendars in C/C++ 81

Calends: Documented, Release 0.1.0

Return type char*

Converts an internal TAI64Time to a date/time string.

TAI64Time Calends_calendar_offset_string(char *calendar, TAI64Time stamp, char *offset)
TAI64Time Calends_calendar_offset_long_long(char *calendar, TAI64Time stamp, long long int offset)
TAI64Time Calends_calendar_offset_double(char *calendar, TAI64Time stamp, double offset)
TAI64Time Calends_calendar_offset_tai(char *calendar, TAI64Time stamp, TAI64Time offset)

Parameters

• calendar (char*) – The name of the target calendar system.

• stamp (TAI64Time) – The internal timestamp value.

• offset (char* or long long int or double or TAI64Time) – The input offset.

Returns The adjusted internal timestamp.

Return type TAI64Time

Adds the given offset to an internal TAI64Time.

6.2.2 Registration

Register

Once it is registered with the library, your calendar system can be used from anywhere in your application. To register
a system, pass it to the following function:

void Calends_calendar_register(char* name, char* defaultFormat,
Calends_calendar_to_internal_string() to_internal_string,
Calends_calendar_to_internal_long_long() to_internal_long_long,
Calends_calendar_to_internal_double() to_internal_double,
Calends_calendar_to_internal_tai() to_internal_tai,
Calends_calendar_from_internal() from_internal,
Calends_calendar_offset_string() offset_string,
Calends_calendar_offset_long_long() offset_long_long,
Calends_calendar_offset_double() offset_double, Calends_calendar_offset_tai() offset_tai)

Parameters

• name (char*) – The name to register the calendar system under.

• defaultFormat (char*) – The default format string.

• to_internal_string (Calends_calendar_to_internal_string()) – The calendar
parser, for char* input.

• to_internal_long_long (Calends_calendar_to_internal_long_long()) – The
calendar parser, for long long int input.

• to_internal_double (Calends_calendar_to_internal_double()) – The calendar
parser, for double input.

• to_internal_tai (Calends_calendar_to_internal_tai()) – The calendar parser,
for TAI64Time input.

• from_internal (Calends_calendar_from_internal()) – The calendar formatter.

82 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

• offset_string (Calends_calendar_offset_string()) – The calendar offset calcula-
tor, for char* input.

• offset_long_long (Calends_calendar_offset_long_long()) – The calendar offset
calculator, for long long int input.

• offset_double (Calends_calendar_offset_double()) – The calendar offset calcula-
tor, for double input.

• offset_tai (Calends_calendar_offset_tai()) – The calendar offset calculator, for
TAI64Time input.

Registers a calendar system class, storing the collected functions as name, and saving defaultFormat for later
use while parsing or formatting.

Unregister

void Calends_calendar_unregister(char *name)

Parameters

• name (char*) – The name of the calendar system to remove.

Removes a calendar system from the callback list.

Check and List

bool Calends_calendar_registered(char *name)

Parameters

• name (char*) – The calendar system name to check for.

Returns Whether or not the calendar system is currently registered.

Return type bool

Returns whether or not a calendar system has been registered, yet.

char *Calends_calendar_list_registered()

Returns The sorted list of calendar systems currently registered.

Return type char*

Returns the list of calendar systems currently registered.

6.2.3 Types and Values

Now we get to the inner workings that make calendar systems function – even the built-in ones. The majority of the
“magic” comes from the TAI64Time struct itself, as a reliable way of storing the exact instants being calculated, and
the only way times are handled by the library itself. A handful of functions provide basic operations that calendar
system developers can use to simplify their conversions (adding and subtracting the values of other timestamps, and
importing/exporting timestamp values from/to other types, in particular), and a couple of helpers exclusively handle
adding and removing UTC leap second offsets. As long as you can convert your dates to/from Unix timestamps in a
char*, long long int, or double, the rest is handled entirely by these helpers in the library itself.

6.2. Custom Calendars in C/C++ 83

Calends: Documented, Release 0.1.0

type TAI64Time
Stores a TAI64NARUX instant in a reliable, easy-converted format. Each 9-digit fractional segment is stored in a
separate 32-bit integer to preserve its value with a very high degree of accuracy, without having to rely on string
parsing or external arbitrary-precision math libraries.

long long int seconds
The number of TAI seconds since CE 1970-01-01 00:00:00 TAI

Note: TAI vs UTC

You may have noticed that a TAI64Time object stores times in TAI seconds, not Unix seconds, with a
timezone offset of TAI rather than UTC. This distinction is very important as it will affect internal calcula-
tions and comparisons to mix the two up. TAI time is very similar to Unix time (itself based on UTC time),
with one major difference. While Unix/UTC seconds include the insertion and removal of “leap seconds”
to keep the solar zenith at local noon (which is useful for day-to-day living and planning), TAI seconds are
a continuous count, unconcerned with dates whatsoever. Indeed, the only reason a date was given in the
description above was to make it easier for human readers to know exactly when 0 TAI took place.

In other words, once you have a Unix timestamp of your instant calculated, be sure to convert it using
TAI64Time_utc_to_tai() before returning the result to the rest of the library. And then, of course, you’ll
also need to convert instants from the library back using TAI64Time_tai_to_utc() before generating
outputs.

unsigned int nano
Nanoseconds since the given second

unsigned int atto
Attoseconds since the given nanosecond

unsigned int ronto
Rontoseconds since the given attosecond

unsigned int udecto
Udectoseconds since the given rontosecond

unsigned int xindecto
Xindectoseconds since the given udectosecond

unsigned int padding
Unused, except to round the value out to the nearest 64 bits

6.2.4 Calculations

TAI64Time TAI64Time_add(TAI64Time t, TAI64Time z)

Parameters

• t (TAI64Time) – The current timestamp.

• z (TAI64Time) – The timestamp to add to the current one.

Returns The sum of the two timestamps.

Return type TAI64Time

Calculates the sum of two TAI64Time values.

84 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

TAI64Time TAI64Time_sub(TAI64Time t, TAI64Time z)

Parameters

• t (TAI64Time) – The current timestamp.

• z (TAI64Time) – The timestamp to subtract from the current one.

Returns The difference of the two timestamps.

Return type TAI64Time

Calculates the difference of two TAI64Time values.

6.2.5 Export

char *TAI64Time_string(TAI64Time t)

Parameters

• t (TAI64Time) – The current timestamp.

Returns The decimal string representation of the current timestamp.

Return type char*

Returns the decimal string representation of a TAI64Time value.

TAI64Time TAI64Time_from_string(char *in)

Parameters

• in (char*) – The decimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAI64Time

Calculates a TAI64Time from its decimal string representation.

char *TAI64Time_hex_string(TAI64Time t)

Parameters

• t (TAI64Time) – The current timestamp.

Returns The hexadecimal string representation of the current timestamp.

Return type char*

Returns the hexadecimal string representation of a TAI64Time value.

TAI64Time TAI64Time_from_hex_string(char *in)

Parameters

• in (char*) – The hexadecimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAI64Time

Calculates a TAI64Time from its hexadecimal string representation.

6.2. Custom Calendars in C/C++ 85

Calends: Documented, Release 0.1.0

double TAI64Time_double(TAI64Time t)

Parameters

• t (TAI64Time) – The current timestamp.

Returns The arbitrary-precision floating point representation of the current timestamp.

Return type double

Returns the double representation of a TAI64Time value.

TAI64Time TAI64Time_from_double(double in)

Parameters

• in (double) – The arbitrary-precision floating point representation of a timestamp to calcu-
late.

Returns The calculated timestamp.

Return type TAI64Time

Calculates a TAI64Time from its double representation.

char *TAI64Time_encode_text(TAI64Time t)

Parameters

• t (TAI64Time) – The current timestamp.

Returns A string containing the encoded text.

Return type char*

Encodes a TAI64Time value as text.

TAI64Time TAI64Time_decode_text(char *in)

Parameters

• in (char*) – A string containing the encoded text.

Returns The decoded timestamp.

Return type TAI64Time

Decodes a TAI64Time value from text.

void *TAI64Time_encode_binary(TAI64Time t, int *len)

Parameters

• t (TAI64Time) – The current timestamp.

• len (int*) – Will return the length of the binary data.

Returns A pointer to the encoded binary data stream.

Return type void*

Encodes a TAI64Time value as a binary data stream.

TAI64Time TAI64Time_decode_binary(void *in, int len)

Parameters

• in (void*) – A pointer to the encoded binary data stream.

86 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

• len (int) – The length of the binary data.

Returns The decoded timestamp.

Return type TAI64Time

Decodes a TAI64Time value from a binary data stream.

6.2.6 Helpers

TAI64Time TAI64Time_utc_to_tai(TAI64Time utc)

Parameters

• utc (TAI64Time) – The timestamp to remove the UTC offset from.

Returns The calculated timestamp.

Return type TAI64Time

Removes the UTC leap second offset from a TAI64Time value.

TAI64Time TAI64Time_tai_to_utc(TAI64Time tai)

Parameters

• tai (TAI64Time) – The timestamp to add the UTC offset to.

Returns The calculated timestamp.

Return type TAI64Time

Adds the UTC leap second offset to a TAI64Time value.

6.3 Custom Calendars in Dart

Adding new calendars to Calends is a fairly straightforward process. Extend the CalendarDefinition abstract class,
and implement two getters and three methods. Then, simply construct an instance of your calendar system, and Calends
will do the rest.

6.3.1 Define

Extend the CalendarDefinition class, implementing the following methods:

class calends.CalendarDefinition

CalendarDefinition.get name()

Returns The name of the calendar system.

Return type String

CalendarDefinition.get defaultFormat()

Returns The defalt format of the calendar system.

Return type String

6.3. Custom Calendars in Dart 87

Calends: Documented, Release 0.1.0

CalendarDefinition.toInternal(dynamic stamp, String format)

Arguments

• stamp (dynamic) – The input stamp. Should support strings at the very minimum.

• format (String) – The format string for parsing the input stamp.

Returns The parsed internal timestamp.

Return type TAI64Time

Throws CalendsException() – when an error occurs

Converts an input date/time representation to an internal TAI64Time.

CalendarDefinition.fromInternal(TAI64Time stamp, String format)

Arguments

• stamp (TAI64Time) – The internal timestamp value.

• format (String) – The format string for formatting the output date.

Returns The formatted date/time.

Return type String

Throws CalendsException() – when an error occurs

Converts an internal TAI64Time to a date/time string.

CalendarDefinition.offset(TAI64Time stamp, dynamic offset)

Arguments

• stamp (TAI64Time) – The internal timestamp value.

• offset (dynamic) – The input offset. Should support strings at the very minimum.

Returns The adjusted internal timestamp.

Return type TAI64Time

Throws CalendsException() – when an error occurs

Adds the given offset to an internal TAI64Time.

6.3.2 Registration

Register

Once it is registered with the library, your calendar system can be used from anywhere in your application:

CalendarDefinition.register()

Adds a calendar system to the callback list.

88 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

Unregister

When you are done with a calendar system, it is best practice to free up resources by unregistering it:

CalendarDefinition.unregister()

Removes a calendar system from the callback list.

Check and List

CalendarDefinition.isRegistered()

Returns Whether or not the calendar system is currently registered.

Return type bool

Returns whether or not a calendar system has been registered, yet.

CalendarDefinition.listRegistered()

Returns The sorted list of calendar systems currently registered.

Return type List<String>

Returns the list of calendar systems currently registered.

6.3.3 Types and Values

Now we get to the inner workings that make calendar systems function – even the built-in ones. The majority of the
“magic” comes from the TAI64Time object itself, as a reliable way of storing the exact instants being calculated, and
the only way times are handled by the library itself. A handful of methods provide basic operations that calendar system
developers can use to simplify their conversions (adding and subtracting the values of other timestamps, and import-
ing/exporting timestamp values from/to string and numeric types, in particular), and a couple of helpers exclusively
handle adding and removing UTC leap second offsets. As long as you can convert your dates to/from Unix timestamps
in a string or numeric type, the rest is handled entirely by these helpers in the library itself.

class calends.TAI64Time

TAI64Time stores a TAI64NARUX instant in a reliable, easily-converted format. Each 9-digit fractional segment
is stored in a separate 32-bit integer to preserve its value with a very high degree of accuracy, without having to
rely on string parsing or external arbitrary-precision mathematics libraries.

TAI64Time.Seconds

The number of TAI seconds since CE 1970-01-01 00:00:00 TAI.

Note: TAI vs UTC

You may have noticed that a TAI64Time object stores times in TAI seconds, not Unix seconds, with a
timezone offset of TAI rather than UTC. This distinction is very important as it will affect internal calcula-
tions and comparisons to mix the two up. TAI time is very similar to Unix time (itself based on UTC time),
with one major difference. While Unix/UTC seconds include the insertion and removal of “leap seconds”
to keep the solar zenith at local noon (which is useful for day-to-day living and planning), TAI seconds are
a continuous count, unconcerned with dates whatsoever. Indeed, the only reason a date was given in the
description above was to make it easier for human readers to know exactly when 0 TAI took place.

In other words, once you have a Unix timestamp of your instant calculated, be sure to convert it using
utcToTai() before returning the result to the rest of the library. And then, of course, you’ll also need to
convert instants from the library back using taiToUtc() before generating outputs.

6.3. Custom Calendars in Dart 89

Calends: Documented, Release 0.1.0

TAI64Time.Nano

The first 9 digits of the timestamp’s fractional component.

TAI64Time.Atto

The 10th through 18th digits of the fractional component.

TAI64Time.Ronto

The 19th through 27th digits of the fractional component.

TAI64Time.Udecto

The 28th through 36th digits of the fractional component.

TAI64Time.Xindecto

The 37th through 45th digits of the fractional component.

TAI64Time.add(TAI64Time z)

Arguments

• z (TAI64Time) – The timestamp to add to the current one.

Returns The sum of the two timestamps.

Return type TAI64Time

Calculates the sum of two TAI64Time values.

TAI64Time.sub(TAI64Time z)

Arguments

• z (TAI64Time) – The timestamp to subtract from the current one.

Returns The difference of the two timestamps.

Return type TAI64Time

Calculates the difference of two TAI64Time values.

TAI64Time.toTAI64String()

Returns The decimal string representation of the current timestamp.

Return type String

Returns the decimal string representation of the TAI64Time value.

TAI64Time.fromTAI64String(String in)

Arguments

• in (string()) – The decimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAI64Time

Calculates a TAI64Time from its decimal string representation.

TAI64Time.toHex()

Returns The hexadecimal string representation of the current timestamp.

Return type String

Returns the hexadecimal string representation of the TAI64Time value.

90 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

TAI64Time.fromHex(string in)

Arguments

• in (string()) – The hexadecimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAI64Time

Calculates a TAI64Time from its hexadecimal string representation.

TAI64Time.toDouble()

Returns The floating point representation of the current timestamp.

Return type double

Returns the double representation of the TAI64Time value.

TAI64Time.fromDouble(double in)

Arguments

• in (double) – The floating point representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAI64Time

Calculates a TAI64Time from its double representation.

TAI64Time.utcToTai()

Returns The calculated timestamp.

Return type TAI64Time

Removes the UTC leap second offset from a TAI64Time value. Used when converting from Unix time to
TAI time.

TAI64Time.taiToUtc()

Returns The calculated timestamp.

Return type TAI64Time

Adds the UTC leap second offset to a TAI64Time value. Used when converting from TAI time to Unix
time.

6.4 Custom Calendars in JS/WASM

Adding new calendars to Calends is a fairly straightforward process. Extend the CalendarDefinition() abstract
class, and implement three methods. Then, simply construct an instance of your calendar system, and Calends will do
the rest.

6.4. Custom Calendars in JS/WASM 91

Calends: Documented, Release 0.1.0

6.4.1 Define

Extend the CalendarDefinition() class, implementing the following methods:

class calends.CalendarDefinition()

CalendarDefinition.name

The name of the calendar system. Can be static or set in the constructor().

CalendarDefinition.defaultFormat

The default/fallback format for the calendar system. Can be static or set in the constructor().

CalendarDefinition.constructor()

This can do anything you like.

CalendarDefinition.toInternal(stamp, format)

Arguments

• stamp (any) – The input. Should support strings at the very minimum.

• format (string) – The format string for parsing the input date.

Returns The parsed internal timestamp.

Return type TAI64Time()

Throws CalendsException() – when an error occurs

Converts an input date/time representation to an internal TAI64Time().

CalendarDefinition.fromInternal(instant, format)

Arguments

• instant (TAI64Time()) – The internal timestamp value.

• format (string) – The format string for formatting the output date.

Returns The formatted date/time.

Return type string

Throws CalendsException() – when an error occurs

Converts an internal TAI64Time() to a date/time string.

CalendarDefinition.offset(instant, offset)

Arguments

• instant (TAI64Time()) – The internal timestamp value.

• offset (any) – The input offset. Should support strings at the very minimum.

Returns The adjusted internal timestamp.

Return type TAI64Time()

Throws CalendsException() – when an error occurs

Adds the given offset to an internal TAI64Time().

92 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

6.4.2 Registration

Register

Once it is registered with the library, your calendar system can be used from anywhere in your application. To register
a system, simply call register() on an object of your new class:

CalendarDefinition.register()

Registers a calendar system instance with the internal Calends library.

Unregister

The way to unregister a calendar system is to do so manually, using the instance you created to register it with in the
first place:

CalendarDefinition.unregister()

Removes a calendar system from the callback list.

Check and List

CalendarDefinition.isRegistered()

Returns Whether or not the calendar system is currently registered.

Return type bool

Returns whether or not a calendar system has been registered, yet.

CalendarDefinition.registered()

Returns The sorted list of calendar systems currently registered.

Return type [string]

Returns the list of calendar systems currently registered.

6.4.3 Types and Values

Now we get to the inner workings that make calendar systems function – even the built-in ones. The majority of the
“magic” comes from the TAI64Time() object itself, as a reliable way of storing the exact instants being calculated,
and the only way times are handled by the library itself. A handful of methods provide basic operations that calen-
dar system developers can use to simplify their conversions (adding and subtracting the values of other timestamps,
and importing/exporting timestamp values from/to string and numeric types, in particular), and a couple of helpers
exclusively handle adding and removing UTC leap second offsets. As long as you can convert your dates to/from Unix
timestamps in a string or numeric type, the rest is handled entirely by these helpers in the library itself.

class calends.TAI64Time()

TAI64Time() stores a TAI64NARUX instant in a reliable, easily-converted format. Each 9-digit fractional seg-
ment is stored in a separate 32-bit integer to preserve its value with a very high degree of accuracy, without
having to rely on string parsing or external arbitrary-precision mathematics libraries.

6.4. Custom Calendars in JS/WASM 93

Calends: Documented, Release 0.1.0

TAI64Time.seconds

The number of TAI seconds since CE 1970-01-01 00:00:00 TAI. Should be an integer value.

Note: TAI vs UTC

You may have noticed that a TAI64Time object stores times in TAI seconds, not Unix seconds, with a
timezone offset of TAI rather than UTC. This distinction is very important as it will affect internal calcula-
tions and comparisons to mix the two up. TAI time is very similar to Unix time (itself based on UTC time),
with one major difference. While Unix/UTC seconds include the insertion and removal of “leap seconds”
to keep the solar zenith at local noon (which is useful for day-to-day living and planning), TAI seconds are
a continuous count, unconcerned with dates whatsoever. Indeed, the only reason a date was given in the
description above was to make it easier for human readers to know exactly when 0 TAI took place.

In other words, once you have a Unix timestamp of your instant calculated, be sure to convert it using
fromUTC() before returning the result to the rest of the library. And then, of course, you’ll also need to
convert instants from the library back using toUTC() before generating outputs.

TAI64Time.nano

The first 9 digits of the timestamp’s fractional component.

TAI64Time.atto

The 10th through 18th digits of the fractional component.

TAI64Time.ronto

The 19th through 27th digits of the fractional component.

TAI64Time.udecto

The 28th through 36th digits of the fractional component.

TAI64Time.xindecto

The 37th through 45th digits of the fractional component.

TAI64Time.add(z)

Arguments

• z (TAI64Time()) – The timestamp to add to the current one.

Returns The sum of the two timestamps.

Return type TAI64Time()

Calculates the sum of two TAI64Time() values.

TAI64Time.sub(z)

Arguments

• z (TAI64Time()) – The timestamp to subtract from the current one.

Returns The difference of the two timestamps.

Return type TAI64Time()

Calculates the difference of two TAI64Time() values.

TAI64Time.toString()

Returns The decimal string representation of the current timestamp.

Return type string

94 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

Returns the decimal string representation of the TAI64Time() value.

TAI64Time.fromString(in)

Arguments

• in (string) – The decimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAI64Time()

Calculates a TAI64Time() from its decimal string representation.

TAI64Time.toHex()

Returns The hexadecimal string representation of the current timestamp.

Return type string

Returns the hexadecimal string representation of the TAI64Time() value.

TAI64Time.fromHex(in)

Arguments

• in (string) – The hexadecimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAI64Time()

Calculates a TAI64Time() from its hexadecimal string representation.

TAI64Time.toNumber()

Returns The numeric representation of the current timestamp.

Return type number

Returns the number representation of the TAI64Time() value.

TAI64Time.fromNumber(in)

Arguments

• in (number) – The arbitrary-precision floating point representation of a timestamp to cal-
culate.

Returns The calculated timestamp.

Return type TAI64Time()

Calculates a TAI64Time() from its numeric representation.

TAI64Time.fromUTC()

Returns The calculated timestamp.

Return type TAI64Time()

Removes the UTC leap second offset from a TAI64Time value.

TAI64Time.toUTC()

Returns The calculated timestamp.

Return type TAI64Time()

Adds the UTC leap second offset to a TAI64Time value.

6.4. Custom Calendars in JS/WASM 95

Calends: Documented, Release 0.1.0

6.5 Custom Calendars in PHP

Adding new calendars to Calends is a fairly straightforward process. Extend the CalendarDefinition abstract class,
and implement three methods. Then, simply construct an instance of your calendar system, and Calends will do the
rest.

6.5.1 Define

Extend the CalendarDefinition class, implementing the following methods:

class Calends\CalendarDefinition

toInternal(mixed $date, string $format)→ TAITime

Parameters

• $date (mixed) – The input date. Should support strings at the very minimum.

• $format (string) – The format string for parsing the input date.

Returns The parsed internal timestamp.

Return type TAITime

Throws CalendsException – when an error occurs

Converts an input date/time representation to an internal TAITime.

fromInternal(TAITime $stamp, string $format)→ string

Parameters

• $stamp (TAITime) – The internal timestamp value.

• $format (string) – The format string for formatting the output date.

Returns The formatted date/time.

Return type string

Throws CalendsException – when an error occurs

Converts an internal TAITime to a date/time string.

offset(TAITime $stamp, mixed $offset)→ TAITime

Parameters

• $stamp (TAITime) – The internal timestamp value.

• $offset (mixed) – The input offset. Should support strings at the very minimum.

Returns The adjusted internal timestamp.

Return type TAITime

Throws CalendsException – when an error occurs

Adds the given offset to an internal TAITime.

96 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

6.5.2 Registration

Register

Once it is registered with the library, your calendar system can be used from anywhere in your application. To register
a system, simply construct an instance:

$customCalendars[] = new MyCalendarSystem('example', 'yyyy-mm-dd@HH-MM-SS');

The first argument is the calendar system’s name. The second is a default format string which will be passed to your
calendar system whenever users leave the format string blank or unset with Calends methods.

Unregister

There are two ways to unregister a calendar system once it’s no longer needed. The first is to simply destruct the
instance you created to register it. For that reason, it’s important to store all your calendar systems to variables rather
than simply constructing them in place. Well, that and the fact you need the calendar system object to persist in order
to handle requests from the rest of the library.

The other way to unregister a calendar system is to do so manually, using the instance you created to register it in the
first place:

Calends\CalendarDefinition::unregister()

Removes a calendar system from the callback list.

Check and List

static Calends\CalendarDefinition::isRegistered(string $name)→ bool

Parameters

• $name (string) – The calendar system name to check for.

Returns Whether or not the calendar system is currently registered.

Return type bool

Returns whether or not a calendar system has been registered, yet.

static Calends\CalendarDefinition::listRegistered→ array

Returns The sorted list of calendar systems currently registered.

Return type [string]

Returns the list of calendar systems currently registered.

6.5.3 Types and Values

Now we get to the inner workings that make calendar systems function – even the built-in ones. The majority of the
“magic” comes from the TAITime object itself, as a reliable way of storing the exact instants being calculated, and the
only way times are handled by the library itself. A handful of methods provide basic operations that calendar system
developers can use to simplify their conversions (adding and subtracting the values of other timestamps, and import-
ing/exporting timestamp values from/to string and numeric types, in particular), and a couple of helpers exclusively
handle adding and removing UTC leap second offsets. As long as you can convert your dates to/from Unix timestamps
in a string or numeric type, the rest is handled entirely by these helpers in the library itself.

6.5. Custom Calendars in PHP 97

Calends: Documented, Release 0.1.0

class Calends\TAITime

TAITime stores a TAI64NARUX instant in a reliable, easily-converted format. Each 9-digit fractional segment is
stored in a separate 32-bit integer to preserve its value with a very high degree of accuracy, without having to
rely on string parsing or external arbitrary-precision mathematics libraries.

property seconds(float)
The number of TAI seconds since CE 1970-01-01 00:00:00 TAI. Should be an integer value; the float
type is used, here, only to be able to hold a full signed 64-bit integer value regardless of architecture.

Note: TAI vs UTC

You may have noticed that a TAI64Time object stores times in TAI seconds, not Unix seconds, with a
timezone offset of TAI rather than UTC. This distinction is very important as it will affect internal calcula-
tions and comparisons to mix the two up. TAI time is very similar to Unix time (itself based on UTC time),
with one major difference. While Unix/UTC seconds include the insertion and removal of “leap seconds”
to keep the solar zenith at local noon (which is useful for day-to-day living and planning), TAI seconds are
a continuous count, unconcerned with dates whatsoever. Indeed, the only reason a date was given in the
description above was to make it easier for human readers to know exactly when 0 TAI took place.

In other words, once you have a Unix timestamp of your instant calculated, be sure to convert it using
fromUTC before returning the result to the rest of the library. And then, of course, you’ll also need to
convert instants from the library back using toUTC before generating outputs.

property nano(integer)
The first 9 digits of the timestamp’s fractional component.

property atto(integer)
The 10th through 18th digits of the fractional component.

property ronto(integer)
The 19th through 27th digits of the fractional component.

property udecto(integer)
The 28th through 36th digits of the fractional component.

property xindecto(integer)
The 37th through 45th digits of the fractional component.

add(TAITime $z)→ TAITime

Parameters

• $z (TAITime) – The timestamp to add to the current one.

Returns The sum of the two timestamps.

Return type TAITime

Calculates the sum of two TAITime values.

sub(TAITime $z)→ TAITime

Parameters

• $z (TAITime) – The timestamp to subtract from the current one.

Returns The difference of the two timestamps.

Return type TAITime

98 Chapter 6. Custom Calendars

Calends: Documented, Release 0.1.0

Calculates the difference of two TAITime values.

toString()→ string

Returns The decimal string representation of the current timestamp.

Return type string

Returns the decimal string representation of the TAITime value.

Note: TAITime also implements __toString, so you can use that instead of calling this function directly,
if you prefer.

fromString(string $in)→ TAITime

Parameters

• $in (string) – The decimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAITime

Calculates a TAITime from its decimal string representation.

toHex()→ string

Returns The hexadecimal string representation of the current timestamp.

Return type string

Returns the hexadecimal string representation of the TAITime value.

fromHex(string $in)→ TAITime

Parameters

• $in (string) – The hexadecimal string representation of a timestamp to calculate.

Returns The calculated timestamp.

Return type TAITime

Calculates a TAITime from its hexadecimal string representation.

toNumber()→ float

Returns The numeric representation of the current timestamp.

Return type float

Returns the float representation of the TAITime value.

fromNumber(numeric $in)→ TAITime

Parameters

• $in (integer or float) – The arbitrary-precision floating point representation of a times-
tamp to calculate.

Returns The calculated timestamp.

Return type TAITime

Calculates a TAITime from its numeric (integer or float) representation.

6.5. Custom Calendars in PHP 99

Calends: Documented, Release 0.1.0

fromUTC()→ TAITime

Returns The calculated timestamp.

Return type TAITime

Removes the UTC leap second offset from a TAITime value.

toUTC()→ TAITime

Returns The calculated timestamp.

Return type TAITime

Adds the UTC leap second offset to a TAITime value.

100 Chapter 6. Custom Calendars

CHAPTER

SEVEN

APPENDIX

7.1 Contributions

Pull requests are always welcome on GitHub! That said, please be open to discussing the PR content, and possibly
revising it if requested. Not all requests can be merged, and not all changes are desired.

Or, you can contribute some money, instead! Check out my Patreon for options, there. Other options will likely be
added for one-time donations in the future.

7.1.1 Security Reporting

Report all security-related issues to dan (dot) hunsaker (plus) calends (at) gmail, and use PGP or GPG protections on
your message (the account’s key is 44806AB9, or you can look it up by the email address). Security issues will be
addressed internally before making any vulnerability announcements.

7.1.2 Contributors

Code

@danhunsaker

Patrons

• Dave McGrath

• M. Fredette

101

https://github.com/danhunsaker/calends
https://www.patreon.com/DanHunsaker
mailto:dan.hunsaker+calends@gmail.com
https://github.com/danhunsaker

Calends: Documented, Release 0.1.0

102 Chapter 7. Appendix

GOLANG PACKAGE INDEX

c
calends, 19
calends/calendars, 75

103

Calends: Documented, Release 0.1.0

104 Golang Package Index

PHP NAMESPACE INDEX

c
Calends, 59

105

Calends: Documented, Release 0.1.0

106 PHP Namespace Index

INDEX

Symbols
(calends.*Calends) UnmarshalJSON (Golang func-

tion), 29
(calends.*Calends) UnmarshalText (Golang func-

tion), 28
(calends.Calends) Abuts (Golang function), 25
(calends.Calends) Add (Golang function), 22
(calends.Calends) AddFromEnd (Golang function),

22
(calends.Calends) Compare (Golang function), 25
(calends.Calends) Contains (Golang function), 25
(calends.Calends) Date (Golang function), 20
(calends.Calends) Difference (Golang function),

25
(calends.Calends) Duration (Golang function), 21
(calends.Calends) EndDate (Golang function), 20
(calends.Calends) EndsAfter (Golang function), 28
(calends.Calends) EndsBefore (Golang function),

27
(calends.Calends) EndsDuring (Golang function),

27
(calends.Calends) Gap (Golang function), 24
(calends.Calends) Intersect (Golang function), 24
(calends.Calends) IsAfter (Golang function), 27
(calends.Calends) IsBefore (Golang function), 26
(calends.Calends) IsDuring (Golang function), 27
(calends.Calends) IsLonger (Golang function), 26
(calends.Calends) IsSame (Golang function), 26
(calends.Calends) IsSameDuration (Golang func-

tion), 26
(calends.Calends) IsShorter (Golang function), 26
(calends.Calends) MarshalJSON (Golang function),

28
(calends.Calends) MarshalText (Golang function),

28
(calends.Calends) Merge (Golang function), 24
(calends.Calends) Next (Golang function), 23
(calends.Calends) Overlaps (Golang function), 25
(calends.Calends) Previous (Golang function), 23
(calends.Calends) SetDate (Golang function), 21
(calends.Calends) SetDuration (Golang function),

21

(calends.Calends) SetDurationFromEnd (Golang
function), 22

(calends.Calends) SetEndDate (Golang function),
21

(calends.Calends) StartsAfter (Golang function),
28

(calends.Calends) StartsBefore (Golang func-
tion), 27

(calends.Calends) StartsDuring (Golang func-
tion), 27

(calends.Calends) String (Golang function), 28
(calends.Calends) Subtract (Golang function), 23
(calends.Calends) SubtractFromEnd (Golang

function), 23
(calends/calendars.CalendarDefinition)

FromInternal (Golang function), 75
(calends/calendars.CalendarDefinition)

Offset (Golang function), 76
(calends/calendars.CalendarDefinition)

ToInternal (Golang function), 75
(calends/calendars.TAI64NARUXTime) Add

(Golang function), 78
(calends/calendars.TAI64NARUXTime) Float

(Golang function), 78
(calends/calendars.TAI64NARUXTime)

HexString (Golang function), 78
(calends/calendars.TAI64NARUXTime)

MarshalBinary (Golang function), 79
(calends/calendars.TAI64NARUXTime)

MarshalText (Golang function), 79
(calends/calendars.TAI64NARUXTime) String

(Golang function), 78
(calends/calendars.TAI64NARUXTime) Sub

(Golang function), 78
(calends/calendars.TAI64NARUXTime)

UnmarshalBinary (Golang function), 79
(calends/calendars.TAI64NARUXTime)

UnmarshalText (Golang function), 79

A
abuts
calends-(batch-mode) command line

107

Calends: Documented, Release 0.1.0

option, 17
calends-compare command line option, 12

abuts() (Calends\Calends method), 65
add

calends-(batch-mode) command line
option, 15

add() (Calends\Calends method), 62
add() (Calends\TAITime method), 98
add-from-end

calends-(batch-mode) command line
option, 15

addFromEnd() (Calends\Calends method), 62
after

calends-compare command line option, 13
atto (Calends\TAITime property), 98

B
before

calends-compare command line option, 12

C
C/C++

custom calendars, 81
installation, 7
usage, 29

CalendarDefinition (class in Calends), 96
CalendarDefinition() (class), 87, 92
CalendarDefinition.defaultFormat (CalendarDef-

inition attribute), 92
CalendarDefinition.name (CalendarDefinition

attribute), 92
calendars, 68
Gregorian Calendar, 69
Julian Day Count, 69
Stardate, 70
TAI64 Time, 71
UNIX Time, 72

Calends (class in Calends), 59
calends (module), 50
Calends (namespace), 59, 95
calends (package), 19, 40
calends command line option
convert, 11
format, 11
offset, 12
parse, 11

Calends() (class), 41, 50
calends.Calends (Golang type), 19
calends.Create (Golang function), 20
calends/calendars (package), 75
calends/calendars.CalendarDefinition (Golang

type), 75
calends/calendars.ErrInvalidFormat (Golang

type), 81

calends/calendars.ErrUnknownCalendar (Golang
function), 81

calends/calendars.ErrUnsupportedInput (Golang
type), 81

calends/calendars.ListRegistered (Golang func-
tion), 77

calends/calendars.Registered (Golang function),
77

calends/calendars.RegisterElements (Golang
function), 76

calends/calendars.RegisterObject (Golang func-
tion), 76

calends/calendars.TAI64NARUXTime (Golang type),
77

calends/calendars.TAI64NARUXTimeFromDecimalString
(Golang function), 80

calends/calendars.TAI64NARUXTimeFromFloat
(Golang function), 80

calends/calendars.TAI64NARUXTimeFromHexString
(Golang function), 80

calends/calendars.TAItoUTC (Golang function), 80
calends/calendars.Unregister (Golang function),

77
calends/calendars.UTCtoTAI (Golang function), 80
Calends_abuts (C function), 36
Calends_add_double (C function), 33
Calends_add_from_end_double (C function), 33
Calends_add_from_end_long_long (C function), 33
Calends_add_from_end_string (C function), 33
Calends_add_long_long (C function), 33
Calends_add_string (C function), 33
Calends_calendar_from_internal (C function), 81
Calends_calendar_list_registered (C function),

83
Calends_calendar_offset_double (C function), 82
Calends_calendar_offset_long_long (C function),

82
Calends_calendar_offset_string (C function), 82
Calends_calendar_offset_tai (C function), 82
Calends_calendar_registered (C function), 83
Calends_calendar_to_internal_double (C func-

tion), 81
Calends_calendar_to_internal_long_long (C

function), 81
Calends_calendar_to_internal_string (C func-

tion), 81
Calends_calendar_to_internal_tai (C function),

81
Calends_calendar_unregister (C function), 83
Calends_compare (C function), 36
Calends_contains (C function), 36
Calends_create_double (C function), 29
Calends_create_double_end_period (C function),

29

108 Index

Calends: Documented, Release 0.1.0

Calends_create_double_range (C function), 29
Calends_create_double_start_period (C func-

tion), 29
Calends_create_long_long (C function), 29
Calends_create_long_long_end_period (C func-

tion), 29
Calends_create_long_long_range (C function), 29
Calends_create_long_long_start_period (C func-

tion), 29
Calends_create_string (C function), 29
Calends_create_string_end_period (C function),

29
Calends_create_string_range (C function), 29
Calends_create_string_start_period (C func-

tion), 29
Calends_date (C function), 30
Calends_decode_json (C function), 40
Calends_decode_text (C function), 39
Calends_difference (C function), 35
Calends_duration (C function), 30
Calends_encode_json (C function), 40
Calends_encode_text (C function), 39
Calends_end_date (C function), 30
Calends_ends_after (C function), 39
Calends_ends_before (C function), 38
Calends_ends_during (C function), 38
Calends_gap (C function), 35
Calends_intersect (C function), 35
Calends_is_after (C function), 38
Calends_is_before (C function), 37
Calends_is_during (C function), 38
Calends_is_longer (C function), 37
Calends_is_same (C function), 36
Calends_is_same_duration (C function), 37
Calends_is_shorter (C function), 37
Calends_merge (C function), 35
Calends_next_double (C function), 34
Calends_next_long_long (C function), 34
Calends_next_string (C function), 34
Calends_overlaps (C function), 36
Calends_previous_double (C function), 34
Calends_previous_long_long (C function), 34
Calends_previous_string (C function), 34
Calends_register_panic_handler (C function), 40
Calends_release (C function), 32
Calends_starts_after (C function), 39
Calends_starts_before (C function), 37
Calends_starts_during (C function), 38
Calends_string (C function), 39
Calends_subtract_double (C function), 33
Calends_subtract_from_end_double (C function),

33
Calends_subtract_from_end_long_long (C func-

tion), 33

Calends_subtract_from_end_string (C function),
33

Calends_subtract_long_long (C function), 33
Calends_subtract_string (C function), 33
Calends_with_date_double (C function), 31
Calends_with_date_long_long (C function), 31
Calends_with_date_string (C function), 31
Calends_with_duration_double (C function), 31
Calends_with_duration_from_end_double (C func-

tion), 32
Calends_with_duration_from_end_long_long (C

function), 32
Calends_with_duration_from_end_string (C func-

tion), 32
Calends_with_duration_long_long (C function), 31
Calends_with_duration_string (C function), 31
Calends_with_end_date_double (C function), 31
Calends_with_end_date_long_long (C function), 31
Calends_with_end_date_string (C function), 31
calends-(batch-mode) command line option
abuts, 17
add, 15
add-from-end, 15
compare, 17
contains, 17
date, 14
difference, 17
end-date, 14
ends-after, 19
ends-before, 18
ends-during, 19
gap, 16
intersect, 16
is-after, 19
is-before, 18
is-during, 18
is-longer, 18
is-same, 18
is-same-duration, 18
is-shorter, 18
merge, 16
next, 16
overlaps, 17
parse, 14
parse-range, 14
previous, 16
set-date, 15
set-end-date, 15
starts-after, 19
starts-before, 18
starts-during, 18
subtract, 15
subtract-from-end, 16

calends-compare command line option

Index 109

Calends: Documented, Release 0.1.0

abuts, 12
after, 13
before, 12
contains, 12
during, 13
end-after, 13
end-before, 13
end-during, 13
longer, 12
overlaps, 12
same, 12
same-duration, 12
shorter, 12
start-after, 13
start-before, 13
start-during, 13

CalendsError() (class), 59
CalendsException (class in Calends), 68
CalendsException() (class), 50
CLI

installation, 7
usage, 11

compare
calends-(batch-mode) command line

option, 17
compare() (Calends\Calends method), 65
contains

calends-(batch-mode) command line
option, 17

calends-compare command line option, 12
contains() (Calends\Calends method), 65
convert

calends command line option, 11
create() (Calends\Calends method), 60
custom calendars, 73

C/C++, 81
Dart, 87
Golang, 75
JS, 91
PHP, 95
WASM, 91

D
Dart

custom calendars, 87
installation, 8
usage, 40

date
calends-(batch-mode) command line

option, 14
date() (Calends\Calends method), 60
difference

calends-(batch-mode) command line
option, 17

difference() (Calends\Calends method), 64
duration() (Calends\Calends method), 61
during
calends-compare command line option, 13

E
end-after
calends-compare command line option, 13

end-before
calends-compare command line option, 13

end-date
calends-(batch-mode) command line

option, 14
end-during
calends-compare command line option, 13

endDate() (Calends\Calends method), 60
ends-after
calends-(batch-mode) command line

option, 19
ends-before
calends-(batch-mode) command line

option, 18
ends-during
calends-(batch-mode) command line

option, 19
endsAfter() (Calends\Calends method), 67
endsBefore() (Calends\Calends method), 66
endsDuring() (Calends\Calends method), 67

F
format
calends command line option, 11

fromHex() (Calends\TAITime method), 99
fromInternal() (Calends\CalendarDefinition method),

96
fromNumber() (Calends\TAITime method), 99
fromString() (Calends\TAITime method), 99
fromUTC() (Calends\TAITime method), 99

G
gap
calends-(batch-mode) command line

option, 16
gap() (Calends\Calends method), 64
Golang
custom calendars, 75
installation, 7
usage, 19

Gregorian Calendar, 69

I
installation, 6

C/C++, 7

110 Index

Calends: Documented, Release 0.1.0

CLI, 7
Dart, 8
Golang, 7
JS, 8
PHP, 9
WASM, 8

intersect
calends-(batch-mode) command line

option, 16
intersect() (Calends\Calends method), 64
is-after

calends-(batch-mode) command line
option, 19

is-before
calends-(batch-mode) command line

option, 18
is-during

calends-(batch-mode) command line
option, 18

is-longer
calends-(batch-mode) command line

option, 18
is-same

calends-(batch-mode) command line
option, 18

is-same-duration
calends-(batch-mode) command line

option, 18
is-shorter

calends-(batch-mode) command line
option, 18

isAfter() (Calends\Calends method), 67
isBefore() (Calends\Calends method), 66
isDuring() (Calends\Calends method), 67
isLonger() (Calends\Calends method), 66
isRegistered() (Calends\CalendarDefinition method),

97
isSame() (Calends\Calends method), 65
isSameDuration() (Calends\Calends method), 66
isShorter() (Calends\Calends method), 66

J
JDC, see Julian Day Count
JS

custom calendars, 91
installation, 8
usage, 50

jsonUnserialize() (Calends\Calends method), 68
Julian Day Count, 69

L
listRegistered() (Calends\CalendarDefinition

method), 97
longer

calends-compare command line option, 12

M
merge

calends-(batch-mode) command line
option, 16

merge() (Calends\Calends method), 64

N
nano (Calends\TAITime property), 98
next

calends-(batch-mode) command line
option, 16

next() (Calends\Calends method), 63

O
offset

calends command line option, 12
offset() (Calends\CalendarDefinition method), 96
overlaps

calends-(batch-mode) command line
option, 17

calends-compare command line option, 12
overlaps() (Calends\Calends method), 65

P
parse

calends command line option, 11
calends-(batch-mode) command line
option, 14

parse-range
calends-(batch-mode) command line
option, 14

PHP
custom calendars, 95
installation, 9
usage, 59

previous
calends-(batch-mode) command line
option, 16

previous() (Calends\Calends method), 63

R
ronto (Calends\TAITime property), 98

S
same

calends-compare command line option, 12
same-duration

calends-compare command line option, 12
seconds (Calends\TAITime property), 98
set-date

Index 111

Calends: Documented, Release 0.1.0

calends-(batch-mode) command line
option, 15

set-end-date
calends-(batch-mode) command line

option, 15
shorter

calends-compare command line option, 12
Stardate, 70
start-after

calends-compare command line option, 13
start-before

calends-compare command line option, 13
start-during

calends-compare command line option, 13
starts-after

calends-(batch-mode) command line
option, 19

starts-before
calends-(batch-mode) command line

option, 18
starts-during

calends-(batch-mode) command line
option, 18

startsAfter() (Calends\Calends method), 67
startsBefore() (Calends\Calends method), 66
startsDuring() (Calends\Calends method), 67
sub() (Calends\TAITime method), 98
subtract

calends-(batch-mode) command line
option, 15

subtract() (Calends\Calends method), 62
subtract-from-end

calends-(batch-mode) command line
option, 16

subtractFromEnd() (Calends\Calends method), 63

T
TAI64 Time, 71
TAI64Time (C type), 83
TAI64Time() (class), 89, 93
TAI64Time.atto (C member), 84
TAI64Time.Atto (TAI64Time attribute), 90
TAI64Time.atto (TAI64Time attribute), 94
TAI64Time.nano (C member), 84
TAI64Time.Nano (TAI64Time attribute), 89
TAI64Time.nano (TAI64Time attribute), 94
TAI64Time.padding (C member), 84
TAI64Time.ronto (C member), 84
TAI64Time.Ronto (TAI64Time attribute), 90
TAI64Time.ronto (TAI64Time attribute), 94
TAI64Time.seconds (C member), 84
TAI64Time.Seconds (TAI64Time attribute), 89
TAI64Time.seconds (TAI64Time attribute), 93
TAI64Time.udecto (C member), 84

TAI64Time.Udecto (TAI64Time attribute), 90
TAI64Time.udecto (TAI64Time attribute), 94
TAI64Time.xindecto (C member), 84
TAI64Time.Xindecto (TAI64Time attribute), 90
TAI64Time.xindecto (TAI64Time attribute), 94
TAI64Time_add (C function), 84
TAI64Time_decode_binary (C function), 86
TAI64Time_decode_text (C function), 86
TAI64Time_double (C function), 85
TAI64Time_encode_binary (C function), 86
TAI64Time_encode_text (C function), 86
TAI64Time_from_double (C function), 86
TAI64Time_from_hex_string (C function), 85
TAI64Time_from_string (C function), 85
TAI64Time_hex_string (C function), 85
TAI64Time_string (C function), 85
TAI64Time_sub (C function), 84
TAI64Time_tai_to_utc (C function), 87
TAI64Time_utc_to_tai (C function), 87
TAITime (class in Calends), 97
toHex() (Calends\TAITime method), 99
toInternal() (Calends\CalendarDefinition method),

96
toNumber() (Calends\TAITime method), 99
toString() (Calends\TAITime method), 99
toUTC() (Calends\TAITime method), 100

U
udecto (Calends\TAITime property), 98
UNIX Time, 72
unregister() (Calends\CalendarDefinition method),

97
usage, 9

C/C++, 29
CLI, 11
Dart, 40
Golang, 19
JS, 50
PHP, 59
WASM, 50

W
WASM

custom calendars, 91
installation, 8
usage, 50

withDate() (Calends\Calends method), 61
withDuration() (Calends\Calends method), 61
withDurationFromEnd() (Calends\Calends method),

62
withEndDate() (Calends\Calends method), 61

X
xindecto (Calends\TAITime property), 98

112 Index

	Introduction
	Features in Calends
	Installation of Calends
	Installing Calends for the Command Line
	Installing Calends for Golang
	Installing Calends for C/C++
	Binary Install
	Source Install

	Installing Calends for Dart
	Installing Calends for JS/WASM
	Installing Calends for PHP

	Usage of Calends
	Using Calends from the Command Line
	Command Line Options
	Interactive/Batch Mode
	Create
	Read
	Update
	Manipulate
	Combine
	Compare

	Using Calends in Golang
	Create
	Read
	Update
	Manipulate
	Combine
	Compare
	Export

	Using Calends in C/C++
	Create
	Read
	Update
	Destroy
	Manipulate
	Combine
	Compare
	Export
	Error Handling

	Using Calends in Dart
	Create
	Read
	Update
	Manipulate
	Combine
	Compare
	Export
	Error Handling

	Using Calends in JS/WASM
	Create
	Read
	Update
	Manipulate
	Combine
	Compare
	Export
	Error Handling

	Using Calends in PHP
	Create
	Read
	Update
	Manipulate
	Combine
	Compare
	Export
	Error Handling

	Calendar Systems
	The Gregorian Calendar
	Julian Day Count
	Stardates
	TAI64 Time
	UNIX Time

	Custom Calendars
	Custom Calendars in Golang
	Define
	Registration
	Register
	Unregister
	Check and List

	Types and Values
	Helpers
	Errors

	Custom Calendars in C/C++
	Define
	Registration
	Register
	Unregister
	Check and List

	Types and Values
	Calculations
	Export
	Helpers

	Custom Calendars in Dart
	Define
	Registration
	Register
	Unregister
	Check and List

	Types and Values

	Custom Calendars in JS/WASM
	Define
	Registration
	Register
	Unregister
	Check and List

	Types and Values

	Custom Calendars in PHP
	Define
	Registration
	Register
	Unregister
	Check and List

	Types and Values

	Appendix
	Contributions
	Security Reporting
	Contributors
	Code
	Patrons

	Golang Package Index
	PHP Namespace Index
	Index

